Transcript 互扩散

第五章 扩散
5.1 扩散定律及其应用
5.2 扩散的微观机理
5.3 扩散的热力学理论
5.4 反应扩散
5.5 一些影响扩散的重要因素
扩散:由于原子(或分子)的微观热运动而导致在
介质中宏观迁移的现象。
在气态和液态物质中,原子迁移可以通过对流和扩
散两种方式进行,与扩散相比,对流要快得多。然而,
在固态物质中,扩散是原子迁移的唯一方式。
实验证实,物质在高温下的许多物理及化学过程均
与扩散有关,因此研究物质中的扩散无论在理论上还
是在应用上都具有重要意义。
相变
半导体掺杂
固溶体的形成
离子晶体的导电
固相反应
扩散
烧结
材料表面处理
扩散的分类:
1.根据有无浓度变化:
自扩散:原子经由自己元素的晶体点阵而迁移的扩散。
(如纯金属或固溶体的晶粒长大-无浓度变化)
互扩散:原子通过进入对方元素晶体点阵而导致的扩
散。(有浓度变化)
2.根据扩散方向:
下坡扩散(顺扩散):原子由高浓度处向低浓度处进行的扩
散。
上坡扩散(逆扩散):原子由低浓度处向高浓度处进行的扩
散。
固态扩散的条件:
温度足够高;时间足够长;扩散原子能固溶;具有驱动力:
化学位梯度。
5.1 扩散定律及其应用
5.1.1 扩散定律
菲克(A. Fick)于1855年参考导热方程,通过实验确立了在
各向同性介质中扩散过程的定量关系——扩散定律(也称菲克
定律)。
5.1.1 稳态扩散下的菲克第一定律(一定时间内,浓度不随时间
变化dc/dt=0)
单位时间内通过垂直于扩散方向的单位截面积的扩散物质量
(/扩散通量)与该物质在该面积处的浓度梯度成正比 。
dC
J  D
dx
其中D:扩散系数,cm2/s;J:扩散通量,g/cm2·s ;dC/dx为
沿x方向的浓度梯度。负号表示扩散由高浓度向低浓度方向进行,
扩散的结果导致浓度梯度的减小,使成份趋于均匀。
扩散第一定律不仅
适合于固体,也适合
于液体和气体中原子
的扩散。
扩散第一定律可用
来处理扩散中浓度不
因时间变化的问题,
如有些气体在金属中
的扩散。
“-”号表示扩散方向为浓度
梯度的反方向,即扩散由
高浓度向低浓度区进行。
例:设有一条内径为30mm的厚壁管道,被厚度为0.1mm铁膜
隔开。通过向管子的一端向管内输人氮气,以保持膜片一侧氮
气浓度为1200 mol/m2,而另一侧的氮气浓度为100mol/m2 。
如在700℃下测得通过管道的氮气流量为2.8×10-4mol/s,求此
时氮气在铁中的分散系数。
解:此时通过管子中铁膜的氮气通量为
膜片两侧的氮浓度梯度为:
根据菲克第一定律
则
5.1.1.2 菲克第二定律
解决非稳态扩散问题,即溶质浓度随时间变化的情况,即
dc/dt≠0。
将D近似取为与c无关的常数时:
C 
C
 2C
 (D )  D 2
t x
x
x
它反映扩散物质的浓度、通量和时间、空间的关系。这是菲克
第二定律一维表达式。
对于三维方向的体扩散:
若Dx=Dy=Dz且与浓度无关时,菲克第二定律普遍式为:
菲克第二定律的物理概念:
即扩散过程中,扩散物质浓度随时间的变化率,与沿扩散方
向上物质浓度梯度随扩散距离的变化率成正比。
扩散第二定律的偏微分方程是x与t的函数,适用于分析浓度
分布随扩散距离及时间而变的非稳态扩散。
5.1.1.3 菲克第二定律的解
应用菲克第二定律解决非稳态扩散问题时,由于需求解以时
间与空间坐标为自变量的偏微分方程,其求解方法取决于边界
和初始条件,一般较复杂。
扩散第二方程表达了在某一位置(距原点x处)扩散元素浓度
随时间变化的速率与该处该元素浓度对x的二次导数间的关系。
通过对它求解,可求出扩散元素浓度c与x、t的关系式。第二方
程的解通常有高斯解、误差函数解和正弦解等,可处理不同的
具体问题。
误差函数解
(1)无限长扩散偶的扩散
将两根溶质原子浓度分别是C1
和C2、横截面积和浓度均匀的金
属棒沿着长度方向焊接在一起,
形成无限长扩散偶,然后将扩散
偶加热到一定温度保温,考察浓
度沿长度方向随时间的变化。
无限长扩散偶中的溶质原子分布
将焊接面作为坐标原点,扩散沿x轴方向,列出扩散问题的初
始条件和边界条件分别为 :
t=0时: x  0, C
t≥0时:
 C2 ; x  0, C  C1
x  , C  C2 ; x  , C  C1
C1  C 2
C1  C 2


x
C 

erf 



2
2
 2 Dt 
erf(z)为误差函数,它的值通过查误差函数表可得。其中:
z
x
2 Dt
高斯误差函数:
erf ( z ) 
2


z
0
e
 y2
dy
误差函数有如下的性质:erf(0) = 0,erf(∞) = 1,erf(-x) =
erf(x)。
扩散开始以后焊接面处的浓度C为扩散偶原始浓度的平均值,
该值在扩散过程中一直保持不变。
扩散的抛物线规律:原子的扩散距离与时间呈抛物线关系,
许多扩散型相变的生长过程也满足这种关系。
误差函数表
(2)半无限长物体的扩散
用于解决恒定源扩散问题,即扩散物质在扩散过程中在工件
表面的浓度始终保持恒定值。
由于渗碳时,活性碳原子附在零件表面上,然后向零件内部
扩散,这就相当于无限长扩散偶中的一根金属棒,因此叫做半
无限长。由于在t时间内,渗碳炉中碳势Cs(活性碳原子的浓
度)保持不变,试样表面扩散组元碳的浓度Cs被维持为常数,
试样中碳组元的原始浓度为C0。
此时,扩散方程的初始条件和边界条件应为:
t = 0时:x > 0,C = C0
t≥0时: x = 0,C = Cs ;x =∞,C = C0
 x 
c( x, t )  cs  (cs  c0 )erf 

 2 Dt 
式中C(x,t)为渗碳时间为t时距表面x处的浓度。
实际应用时:
cs  c( x, t )
 x 
 erf 

cs  c0
 2 Dt 
有两条由菲克第二定律推导出来的结论十分简单、有用:
对于钢铁材料渗碳处理时,扩散需要的时间t与扩散距离x的
平方成正比。
对于同一个扩散系统,扩散系数D与扩散时间t的乘积为一常
数。
例:含0.20%碳的碳钢在927 ℃进行气体渗碳。假定表面C含
量增加到0.9%,试求距表面0.5mm处的C含量达0.4%所需的
时间。已知D (927 ℃) =1.28 ×10-11 m2/s。
解:已知Cs= 0.9% ,x=0.5,C0=0.2%,D,Cx=0.4%代入式
得
 x  c s  c ( x, t )
erf 

cs  c0
 2 Dt 
=0.7143
查误差函数表得:erf(0.8)=0.7421,erf(0.75)=0.7112,用内差
法可得z=0.755,
因此,t=8567s=2.38h。
思考题
1.假设对一个原始碳浓度为0.25wt %的钢件进行渗碳处理,要
求渗碳层厚度为0.5mm处的碳浓度为0.8wt %,渗碳气体的碳
浓度为1.2wt %,在950℃进行渗碳处理。应用菲克第二定律计
算可以知道,需要时间约7小时。如果将渗碳层厚度由0.5mm
提高到1.0mm,则需要多少时间?
t1
t2
 2
2
x1 x2
t1  x
7 1.0
t2  2 
 28(h)
2
x1
0.5
2
2
2
2.已知Cu在Al中的扩散系数D, 在500℃和600℃时分别为
4.8×10-14 m2/s和5.3×10-13 m2/s。假如一个工件在600℃需要
处理10小时,如果在500℃处理,要达到同样的效果则需要多
少小时?
(Dt)500 = (Dt)600
13
( Dt ) 600 (5.3 10 ) 10
t500 

 110.4(h)
14
D500
4.8 10
5.1.2 柯肯达尔(Kirkedall)效应
互扩散——柯肯达尔效应: 置换式固溶体中,溶质、溶剂原
子大小相近,具有相近的迁移率,在扩散中,溶质、溶剂原子
同时扩散的现象。
柯肯达尔最先发现互扩散,在铜—黄铜扩散偶中,用钼丝作
为标志,785℃下保温不同时间后,钼丝向黄铜内移动,移动
量与保温时间的平方根成正比,实验模型如图。
若DCu=DZn,由于锌原子尺寸大于铜原子,扩散以
后界面外侧的铜晶格膨胀,内部的黄铜晶格收缩,
这种由于原子尺寸的不同也会引起界面向内漂移,
但位移量只有实验值的十分之一左右。故点阵常数
变化不是引起钼丝移动的唯一原因,即铜扩散系数
DCu不可能与DZn相等,
柯肯达尔效应的唯一解释是,锌的扩散速度大于铜
的扩散速度,使越过界面向外侧扩散的锌原子数多
于向内侧扩散的铜原子数,出现了跨越界面的原子
净传输,导致界面向内漂移。
进一步研究发现,Cu-黄铜分界面黄铜侧出现宏观
疏孔,这是由于扩散中黄铜中Zn向铜中扩散量大于Cu
原子从铜向黄铜中扩散量,黄铜中空位数多,超过平
衡浓度,空位部分聚集形成疏松,这说明在置换式固
溶体中扩散的主要机制是空位扩散。
对于二元置换扩散体系中,菲克定律中的扩散系数
应采用互扩散系数。
互扩散系数: D=DAxB+DBxA
其中,xi 为组元i的体积分数。
5.2 扩散的微观机理
5.2.1 扩散机制
均匀固溶体中间隙机制和空位机制最主要。
5.2.1.1 间隙机制
间隙扩散是小的间隙原子,扩散时由一个间隙位置跃迁到另
一个间隙位置。间隙原子换位时,必须从基体原子之间挤过去,
这就要求间隙原子具有足够的激活能来克服基体原子造成的势
垒。
如图所示,间隙原子从位置1跳到位置2的势垒
ΔG=G2-G1,因此只有那些自由能超过G2的原子才
能发生跳跃。
原子迁移需
跃过的势垒
5.2.1.2 空位机制
晶体中存在着空位。这些空位的存在使原子迁移更容易,故
大多数情况下,原子扩散是借助空位机制。
5.2.1.3 其他扩散机制
填隙机制:本应处于点阵位置的原子有时会出现在间隙位置。
由于形成这种间隙原子所需能量较高,一般情况下这类缺陷浓
度很低,故对扩散贡献不大。但辐照可大大增加此类缺陷。
直接换位机制和环形换位机制:需两个或更多的原子协同跳
动,所需能量也较高;且换位的结果必然是通过界面流入和流
出的原子数目相等,不可能产生柯肯达尔效应。
5.2.2 扩散系数公式
考虑两个邻近的晶面1和晶面2,面间距为a,设n1和n2分别
为晶面1和晶面2上的扩散原子面密度。
则每秒由平面1跳跃到平面2和由平面2跳跃到平面1的原子数
分别为:
pan1和pan2
a
其中Γ为溶质原子的跃迁频率;p为
任何一次溶质原子跳动使其从一个晶
面1跃迁至相邻晶面的几率,对于三
维体扩散过程,p=1/6。
图 扩散系数公式的推导
如果n1>n2,则:
1
J  (n1  n2 )
6
又由于晶面的溶质体积浓度c与溶质原子面密度n的关系为:
C=n/a,而晶面2的体积浓度c2与晶面1的体积浓度c1的关系为:
dc
c2  c1  a
dx
故
1 2 dc
J   a
6
dx
dC
J  D
dx
dc 2
n2  n1 
a
dx
则
1 2
D  a
6
对于间隙型扩散,设原子的振动频率为v,溶质原子最邻近的间隙
则
 Gm
  vz exp(
)
kT
 Gm
1 2 1 2
 U
Q
D  称为扩散常数;ΔU是间隙扩散时溶质原子跳跃所需额外的热
a  a vz exp(
)  D0 exp(
)  D0 exp(
)
式中D
60
6
kT
kT
kT
扩散元素
基体金属
D0/10-5m2/s
Q/103J/mol
N
γ-Fe
0.33
144
C
α-Fe
0.20
84
N
α-Fe
0.46
75
Fe
α-Fe
19
239
Fe
γ-Fe
1.8
270
Ni
γ-Fe
4.4
283
Mn
γ-Fe
5.7
277
5.2.3 扩散激活能
当晶体中的原子以不同方式扩散,所需的扩散激活能Q值是
不同的。在间隙扩散机制中Q=ΔU;在空位扩散机制中
Q=ΔU+ΔUV(ΔUV空位形成能)。空位(置换)扩散的激活能
包括原子跃迁激活能和空位形成能两部分,与间隙扩散比,空
位扩散一般具有更高的扩散激活能和更低的扩散系数。
非晶态固体中原子排列没有晶体紧密,跃迁频率高,因此与
同一物质的晶态比,非晶态固体的扩散系数较高,扩散激活能
较低。
除此外,还有晶界扩散、表面扩散、位错扩散,它们的扩散
激活能是各不相同的。因此,求出某种条件的扩散激活能,对
于了解扩散的机制是非常重要的。
表面扩散
晶界扩散及表面扩散:
对于多晶材料,扩散物质
亚晶界扩散
可沿三种不同路径进行,即
晶体内扩散(或称体扩散),
晶界扩散和样品自由表面扩
晶界扩散
晶格扩散
散,并分别用DL和DB和DS表
示三者的扩散系数值。
结论:DS>DB>DL。
DL,DB和DS关系图
5.3 扩散的热力学理论
5.3.1 扩散驱动力
菲克第一定律描述了物质从高浓度向低浓度扩散的
现象,扩散的结果导致浓度梯度的减小,使成份趋于
均匀。但实际上并非所有的扩散过程都是如此,物质
也可能从低浓度区向高浓度区扩散,扩散的结果提高
了浓度梯度。例如铝铜合金时效早期形成的富铜偏聚
区,以及某些合金固溶体的调幅分解形成的溶质原子
富集区等,这种扩散称为“上坡扩散”或“逆向扩散”。
上坡扩散说明从本质上来说浓度梯度并非扩散的驱
动力。
根据热力学理论,在等温等压条件下,系统变化总是向吉布
斯自由能降低的方向进行,自由能最低态是系统的平衡状态,
过程的自由能变化是系统变化的驱动力:
G  0
对于多元体系,设ni为组元i的原子数,则在等温等压条件下,
组元i原子的自由能可用化学位表示:μi= G/ ni
原子受到的驱动力为:
ui
F 
x
式中:“-”号表示驱动力与化学位下降的方向一致,也就是扩
散总是向化学位减少的方向进行的。当各相中同一组元的化学
位相等(多相合金),则达到平衡状态,宏观扩散停止。
原子扩散的真正驱动力是化学位梯度。
5.3.2 扩散系数的热力学因子
组元i的扩散系数可表示为:Di=KTBi(1+ lni/ lnCi)
其中,Bi为组元i的原子迁移率;  i为组元i在固溶体中
的活度系数;(1+ lni / lnCi) 称为热力学因子。
当(1+ lni / lnCi)<0时,Di<0,发生上坡扩散。
5.3.3 上坡扩散
引起上坡扩散可能有以下一些情况:
1) 弹性应力的作用:晶体中存在弹性应力梯度时,如弯曲固
溶体,上部受拉点阵常数增大,大原子上移至受拉区,下部受
压点阵常数变小,小原子移向受压区,出现逆扩散 ,造成固
溶体中溶质原子的不均匀分布。
2) 晶界的内吸附:晶界能量比晶内高,如果溶质原子位于晶
界上可降低体系总能量,它们会优先向晶界扩散,富集于晶界
上,此时溶质在晶界上的浓度就高于在晶内的浓度。
3) 大的电场或温度场:能促使晶体中原子按一定方向扩散,
造成扩散原子的不均匀性。
5.4 影响扩散的因素
5.4.1 温度
温度是影响扩散速率的最主要因素。随着温度的升高,扩散
系数急剧增大;且原子的振动能↑,因此借助于能量起伏而越过
势垒进行迁移的原子几率↑;并且金属内部的空位浓度↑,这也
有利于扩散。
由扩散系数的表达式D=D0exp(-Q/RT) ,得出扩散系数的一
般表达式:
取对数得
D0和Q是随成分和晶体结构变化而变化的,与温度基本无关,
常看作常数。扩散系数与温度的变化就是指数关系。
对固体中扩散型相变、晶粒长大、化学热处理有重要影响。
工业渗碳:1027℃比927℃时,D增加三倍,即渗碳速度加
快三倍。
lnD
lnD0
k=-Q/R
1/T
lnD-1/T 的 关系图
5.4.2 固溶体类型
间隙固溶体中溶质原子的扩散激活能一般都比置换固溶体的
溶质原子小,扩散速度比置换型溶质原子快得多。
例如,C,N,B等溶质原子在铁中的间隙扩散激活能比Cr,
Al等溶质原子在铁中的置换扩散激活能要小得多,钢件表面热
处理在获得同样渗层浓度时,渗C,N比渗Cr或Al等金属的周
期短,
5.5.3 晶体结构
晶体结构反映了原子在空间排列的紧密程度。晶体的致密度
越高,原子扩散时的路径越窄,产生的晶格畸变越大,同时原
子结合能也越大,使得扩散激活能越大,扩散系数减小。
晶体各向异性使D有各向异性。
5.4.4 晶体缺陷
晶界、表面和位错等可看成加速扩散的“管道”,这是由于
晶体缺陷处点阵畸变较大,原子处于较高的能量状态,易于跳
跃,故各种缺陷处的扩散激活能均比晶内扩散激活能小,加快
了原子的扩散。
位错和空位都可促进置换扩散,而对于间隙原子则不然,一
方面会加速其扩散,另一方面会促使其偏聚,反而阻碍其扩散,
所以情况较复杂。
晶粒尺寸越小,金属的晶界面积越多,晶界扩散对扩散系数
的贡献就越大。
温度较低时晶界扩散激活能比体扩散激活能小得多,晶界扩
散起主导作用;温度较高时晶体中的空位浓度增加,扩散速度
加快,体扩散起主导作用。
5.4.5 化学成分
溶质扩散系数随浓度增加而增大。只有当浓度很低,或者浓
度变化不大时,才可将扩散系数看作是与浓度无关的常数。
金属的自扩散激活能随金属熔点提高而增大。若溶质元素使
合金熔点降低,则D增加。
强碳化物形成元素如W、Mo、Cr等,能强烈阻止碳的扩散,
降低碳的扩散系数;形成不稳定碳化物的元素如Mn,对碳扩散
的影响不大;不形成稳定的碳化物而溶于固溶体中的元素对碳
扩散的影响比较复杂,如Co、Ni可提高C的扩散,而Si则降低
碳的扩散。
5.5 反应扩散
前面讨论的是单相固溶体中的扩散,其特点是溶质原子的
浓度未超过固溶体的溶解度。
在许多的实际相图中,不仅包含一种固溶体,有可能出现
几种固溶体或者中间相。如果由构成这样相图的两个组元制
成扩散偶,或者在一种组元的表面渗入另一种组元,并且在
温度适宜保温时间足够的情况下,就会由于作为基体的组元
过饱和而反应生成一种或者几种新的合金相(中间相或者固
溶体)。
将伴随有相变过程的扩散,或者有新相产生的扩散称为反
应扩散或者相变扩散。
反应扩散的实例--渗碳过程:
一般渗碳时钢处于γ单相区。由于γ-Fe的碳极限溶解度较高,
渗碳过程中的碳势一般不会超过碳在γ-Fe中的极限溶解度,因
而不会因反应扩散而形成新相。
如果纯铁在低于912℃的温度下渗碳,由于碳在α-Fe中的极
限溶解度很小,渗碳时会出现典型的反应扩散现象。这一现象
可根据Fe-Fe3C相图进行分析。
将纯铁置于800℃渗碳,渗碳开始时,纯铁棒组织为α-Fe。
渗碳过程中随表面碳浓度达到图中所示c1时,表层铁碳合金的
晶体结构发生变化(相变),由铁素体转变为奥氏体,即发生
反应扩散。在此温度下两相的平衡成分可根据Fe-Fe3C相图确
定。
此后,表层区域便一直保持为奥氏体相,端面上奥
氏体的碳浓度在达到碳势所对应的浓度cs(cs≤c3,因
为再高将形成碳化物)后将保持不变。而在奥氏体与
铁素体交界处,奥氏体成分始终保持为C2 ,铁素体成
分始终保持为C1。从相图可知在两相的分界面处碳的
含量出现了突变。在界面处发生了反应扩散。
随渗碳时间的增加,反应扩散的结果使α相不断转
变为γ相,两单相区宏观界面不断向铁素体相区迁移,
奥氏体区域厚度不断增加。
可见二元合金的在一定温度下进行反应扩散过程中,渗层中
无两相区。这是二元系发生反应扩散时的必然现象。原因:对
于处于两相区某一温度下的二元合金,如出现两相区,则组元
在两平衡相中的化学位相等,即在两相区内化学位梯度为0,因
此在两相区内不可能有宏观的扩散流,即通过此区域扩散通量
为0,反应扩散在此中断。这显然与实际情况不符。
值得指出的是这表现在恒温扩散过程时,处理结束后冷却下
来,材料会遵照相图的规律发生相关的变化,所以并不代表到
室温时不存在两相区,但这个成分的突变会保留下来。
三元系中三相区温度反应扩散渗层中无三相区,但可以有两
相区。
单独依靠扩散从固体中析出另一新相,新相的层深和时间的
关系为:
而生长速度则为: