Nuclei & the Cosmos: Symmetries of the Standard Model & …

Download Report

Transcript Nuclei & the Cosmos: Symmetries of the Standard Model & …

Nuclei & the Cosmos: Symmetries of
the Standard Model & Beyond
M.J. Ramsey-Musolf
N. Bell
V. Cirigliano
J. Erler
R. Erwin
J. Kile
A. Kurylov
C. Lee
S. Profumo
S. Su
S. Tulin
P. Vogel
P. Wang
M. Wise
Nuclear Science
Cosmic Energy Budget
Dark Matter
Baryons
Dark Energy
The mission: Explain the origin, evolution, and
structure of the baryonic matter of the Universe
Nuclear Science
Cosmic Energy Budget
Dark Matter
Baryons
Three frontiers:
Dark Energy
• Fundamental symmetries & neutrinos
• Nuclei and nuclear astrophysics
• QCD
Fundamental Symmetries & Cosmic History
• What were the fundamental symmetries
that governed the microphysics of
the early universe?
• What insights can low energy (E << MZ)
precision nuclear physics studies
provide?
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Beyond the SM
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
Electroweak
symmetry
Puzzles the Standard
Model
can’t solve
breaking: Higgs ?
1.
2.
3.
4.
Origin of matter
Unification & gravity
Weak scale stability
Neutrinos
Beyond the SM
What are the symmetries
(forces) of the early
universe beyond those of
the SM?
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Baryogenesis: When?
CPV? SUSY? Neutrinos?
WIMPy D.M.: Related
to baryogenesis?
“New gravity”? Lorentz
violation? Effects on CMB?
?
Beyond the SM
SM symmetry (broken)
Cosmic Energy Budget
Fundamental Symmetries & Cosmic History
Early universe
Present universe
Standard Model
4
2
gi
High energy desert
Weak scale
log10 ( / 0 )
Planck scale
Fundamental Symmetries & Cosmic History
Early universe
Present universe
Standard Model
4  for
A “near miss”
2
grand unification
g
Gravity
i
Is there unification?
What new forces are
responsible ?
Weak scale
High energy desert
log10 ( / 0 )
Planck scale
Fundamental Symmetries & Cosmic History
Early universe
Present universe
Standard Model
4
Weak scale
2
gi
unstable:
Why is GF
so large?
Weak scale
Unification
Neutrino
mass Origin of
matter
High energy desert
log10 ( / 0 )
Planck scale
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Are they their own antiparticles?
Why are their masses so small?
Can they have magnetic moments?
Implications of mn for neutrino interactions ?
Neutrinos ?
Beyond the SM
SM symmetry (broken)
There must have been additional
symmetries in the earlier Universe to
• Unify all matter, space, & time
• Stabilize the weak scale
• Produce all the matter that exists
• Account for neutrino properties
• Give self-consistent quantum gravity
Supersymmetry, GUT’s, extra dimensions…
What are the new fundamental
symmetries?
Two frontiers in the search
Collider experiments
Indirect searches at
(pp, e+e-, etc) at higher
lower energies (E < MZ)
energies (E >> MZ)
but high precision
Large Hadron Collider
Ultra cold neutrons
CERN
High energy
physics
LANSCE, NIST, SNS, ILL
Particle, nuclear
& atomic physics
What are the new fundamental symmetries?
•
Why is there more matter than antimatter
in the present universe?
Electric dipole moment searches
•
What are the unseen forces that
disappeared from view as the universe
cooled?
Precision electroweak: weak decays, scattering, LFV
•
What are the masses of neutrinos and
how have they shaped the evolution of the
universe?
Neutrino oscillations, 0nbb-decay, q13 , …
Tribble report
What is the origin of baryonic matter ?
Cosmic Energy Budget
E
d  dS
Dark Matter


Baryons
n EDM
B (7.3 2.5) 1011
YB  
s (9.2 1.1) 1011
BBN
WMAP
Dark Energy

dS E

h
T-odd , CP-odd
by CPT theorem
What are the
Searches
for permanent
quantitativeelectric
implications
dipoleof new
moments
EDM
experiments
(EDMs) of
forthe
explaining
neutron,the
electron,
origin of
andbaryonic
the
neutral atoms
component
probe of
new
theCP-violation
Universe ?
EDMs & Baryogenesis
Present universe
Early universe
Sakharov Criteria
• B violation
• C & CP violation
 Y1

• Nonequilibrium
dynamics
Sakharov, 1967
 1
L


Weak scale
baryogenesis can be
tested experimentally
 1
S
?
?
log10 ( / 0 )
Weak scale
Planck scale
Leptogenesis
Early universe
Key Ingredients
Present universe
• Heavy nR
 Y1
• mnspectrum
• CP violation
Leptogenesis

• L violation
b-decay, 0nbbdecay, q13
 1
S

Weak scale
log10 ( / 0 )
Planck scale
EW Baryogenesis: Standard Model
Weak Scale Baryogenesis
Anomalous Processes
• B violation
• C & CP violation
JB
• Nonequilibrium
dynamics
A
qL

Sakharov, 1967
W

W
Different vacua: D(B+L)= DNCS
Kuzmin, Rubakov, Shaposhnikov
McLerran,…



Sphaleron Transitions
EW Baryogenesis: Standard Model
Shaposhnikov
2
J  s12 s13 s23 c12 c13
c 23 sin13
 (2.88 0.33) 105
Weak Scale Baryogenesis
mt4 mb4 mc2 ms2
13

3
10
MW4 MW4 MW2 MW2
• B violation
• C & CP violation
• Nonequilibrium
dynamics


Sakharov, 1967
F
F
1st order

2nd order


• CP-violation too weak
• EW PT too weak
Increasing mh



Baryogenesis: New Electroweak Physics
90’s:
Weak Scale Baryogenesis
• B violation
Cohen, Kaplan, Nelson
Joyce, Prokopec, Turok
Unbroken phase
Topological transitions
new
• C & CP violation
• Nonequilibrium
dynamics
(x)
Broken phase

1st order phase 
transition
CP Violation
Sakharov, 1967
new
• Is it viable?
• Can experiment constrain it?
• How reliably can we compute it?

new


new
e


EDM Probes of New CP Violation
CKM
f
e
n
199
Hg

dSM
dexp
dfuture
 1040
 1030
 1.6 1027
 6.3 1026
 1031
 1029
 1033
 1028
 2.11028
 1.11018
 1032
 1024
Also 225Ra, 129Xe, d
If new EWK CP violation is responsible for abundance
of matter, will these experiments see an EDM?
Present n-EDM limit
Proposed n-EDM limit
?
Matter-Antimatter
Asymmetry in
the Universe
Better theory
M. Pendlebury
B. Filippone
Riotto; Carena et al.;
Lee, Cirigliano, R-M, Tulin
“n-EDM has killed more theories than any other single experiment”
Systematic Baryogenesis
Goal: Derive dependence of YB on parameters
Lnew systematically (controlled approximations)
Parameters in Lnew
CPV phases
Bubble & PT
dynamics
Departure from equilibrium
• Earliest work: QM scattering & stat mech
• New developments: non-equilibrium QFT
Systematic Baryogenesis
Unbroken phase
(x)
Topological transitions
“snow”
Broken phase
1st order phase transition
Cohen, Kaplan,
Nelson
Joyce, Prokopec,
Turok
nL produced in wall
& diffuses in front
B
 D 2B  WS FWS (x)nL (x)  RB 
t
FWS (x) !0 deep inside bubble
JB
qL

W

W
Systematic Baryogenesis
Riotto
Carena et al
Lee, Cirigliano,
Tulin, R-M
Unbroken phase
(x)
Topological transitions
Compute from first
principles given Lnew
Broken phase

1st order phase transition
ni
˜
 D 2ni  Sn j ,T,, M
t
Quantum Transport Equation



G˜
G˜ 0

=
˜

G˜ 0

+…
G˜ 0
+
+
Expansion in
scale ratios
Schwinger-Dyson Equations
SUSY: a candidate symmetry of the
early Universe
Supersymmetry
Fermions
Bosons
e L,R , q L,R
e˜ L,R , q˜ L,R
gauginos
˜ , Z˜ ,
˜, g
˜
W
W , Z , , g
Higgsinos
˜ ,H
˜
H
u
d
sfermions
Hu , H d
H

0
˜ , Z˜ ,
˜  
˜, H
˜
˜
W
,

 u, d

Charginos,
neutralinos
SUSY and R Parity
If nature conserves
PR
PR  1
3(BL)
1
2S
vertices have even
number of superpartners
Consequences
0
˜
 Lightest SUSY particle  
is stable
viable dark matter candidate
 Proton is stable
 Superpartners appear only in loops
Systematic Baryogenesis: MSSM
F
F
1st order

2nd order
LEP EWWG


Increasing mh



1st order PT in MSSM:
mh < 120 GeV
mh>114.4 GeV
Constraint
on mh relaxed
for
How
is electroweak
symmetry
larger gauge/Higgs sector
See, e.g., Kang
broken?
(NMSSM,(LCH,
etc.) ILC)
et al for U(1)’
or ~ 90 GeV
(SUSY)
Systematic Baryogenesis: MSSM
SUSY mass parameter
H˜ u
H˜ d
Hu
Hd


MSSM EWB:
Higgsino-Gaugino
driven

 ,A
 Soft SUSY-breaking mass parameters


B˜ ,W˜ ,W˜ 0, g˜

M1,2,3
f˜
H
f˜
f˜
M
2
L,R
Hu
Hd
f˜
Af
b0
Systematic Baryogenesis: MSSM
new
Chargino Mass Matrix
MC =
T ~TEW : scattering
 ~ ~ 
of H,W from
background field
mW 2 cosb
M2
mW 2 sin b

T << TEW : mixing
~ ~
~0
of H,W to ~,
Neutralino Mass Matrix
M1
MN =
0
(x)
0
-mZ cos bsin qW
mZ cos bcos qW
M2
mZ sin bsin qW
-mZ sin bsin qW
-mZ cos bsin qW
mZ cos bcos qW
0
-
mZ sin bsin qW
-mZ sin bsin qW
-
0
EDM constraints & SUSY CPV
Lee et al
Near degeneracies
resonances
BBN
WMAP
(x)
new

de
A

de
199Hg
A
199Hg
BAU
BAU



new

new
Different choices for SUSY parameters






new
e

EDM constraints & SUSY CPV
Future: EDMs & LHC
Dark Matter Constraints
de
A
BBN
WMAP
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
dn
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
new
Disfavored
new





new
(x)
LargeHadron
HadronCollider
Collider
Large
 Non-equilibrium QFT

new
e



Lee,
Cirigliano, R-M
EDM constraints & SUSY CPV
Neutralino-driven
baryogenesis
Baryogenesis
LEP II Exclusion
Two loop de
SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2
Cirigliano,
Profumo, R-M
Relic Abundance of SUSY DM
T << TEW : mixing
~ ~
~0
of H,W to ~,
Neutralino Mass Matrix
M1
MN =
0
0
-mZ cos bsin qW
mZ cos bcos qW
M2
mZ sin bsin qW
-mZ sin bsin qW
-mZ cos bsin qW
mZ cos bcos qW
0
-
mZ sin bsin qW
-mZ sin bsin qW
-
0
N11B 0N12W 0N13Hd0N14Hu0
BINO
˜ 10

t
t˜

˜ 10


+ res
t
WINO
HIGGSINO
~10
~ 0 , ~ 
i
~10
W,Z
+ coannihilation
j
W,Z
Dark Matter: Relic Abundance
˜10

t˜

Neutralino-driven
baryogenesis
t
suppressed
˜10

t




~10
LEP II Exclusion
W,Z
~i0 , ~ j
~ 0
1
too fast
Non-thermal 0
W,Z
SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2
Cirigliano,
Profumo, R-M
Dark Matter: Neutrinos in the Sun
˜0

Z0
˜0





n
n
Neutralino-driven
baryogenesis

SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2
Cirigliano,
Profumo, R-M
Dark Matter: Future Experiments
Cirigliano,
Profumo, R-M
Fundamental Symmetries & Cosmic History
Electroweak
symmetry
New “Hidden” Forces:
Supersymmetry
?
breaking: Higgs ?
1.
2.
3.
4.
Unification & gravity
Weak scale stability

Origin of matter
Neutrinos
n
˜
n
˜0





Beyond the SM
ne

˜

W

e

SM symmetry (broken)
Weak decays
Vud

u c t Vcd

Vtd
d  u e ne
s  u e ne
b  u e ne

2
2
Vud  Vus  Vub
2
=
Vus Vub d
 
Vcs Vcb s 
 
Vts Vtb b
1
SM
0.9968 0.0014
Expt
0.94870.0010 0.04820.0008 0.000010.000007
LANSCE, NIST, SNS, ILL,
LBL, TAMU, PSI, ANL,….
Weak decays
Vud

u c t Vcd

Vtd
d  u e ne
s  u e ne
b  u e ne

b-decay
n  p e ne


A(Z,N)  A(Z 1,N 1) e  n e
    0 e n e
Vus Vub d
 
Vcs Vcb s 
 
Vts Vtb b
GFb
 Vud 1 Drb  Dr 

GF
SUSY Loops

Weak decays
Vud

u c t Vcd

Vtd
d  u e ne
s  u e ne
b  u e ne

kaon decay

0 
K   e n e

Value of Vus important
Vus Vub d
 
Vcs Vcb s 
 
Vts Vtb b
GFK
 Vus 1 DrK  Dr 

GF

New physics:
too period
small
Details:
question
Weak decays & SUSY
Vud

u c t Vcd

Vtd
d  u e ne
s  u e ne
b  u e ne
n



˜

0

n


n p e ne

˜



SUSY
e
n
A(Z,N)  A(Z 1,N
1) e  n e

˜
n

0  n˜

   
e n e
˜0

GFb
 Vud 1 Drb  Dr 

GF
e


O
 ~ 0.001
 OSM
W
b-decay
˜
n

ne
Vus Vub d
 
Vcs Vcb s 
 
Vts Vtb b
e
˜




e
SUSY

SUSY loops
Dr
SUSY Radiative Corrections
n
W
Propagator




n

Vertex &
External
 leg



˜
n
W
˜0



W


 
˜

˜
n

  n˜


n
ne



˜



ne 

e
e˜ 

W

ne


n˜
 e 
˜ 


˜

e  
e


 
e

0



W

˜

n


n
ne

 
˜0


Box

˜

W



˜0

e
ne

e


Kurylov, R-M
SUSY must be a broken symmetry
Superpartners have
not been seen
M e˜  me
M q˜  mq
M ˜  MW ,Z ,
Can we test models of
SUSY breaking mediation ?
Theoretical models
of SUSY breaking
SUSY Breaking
Visible
World
Hidden
World
Flavor-blind mediation
Weak decays & SUSY
R Parity Violation
R-M,
V Flavor-blind
dSu
VKurylov,
VSUSY-
d  u e ne
ud
us
breaking

u c t Vcd

Vtd
M
s  u e ne

b  u e ne
n
ne
O
˜


~ 0.001

SM
 12k ˜

12k

n  p e ne e n O

e
b-decay
e˜
˜
n
0

ne
W
k
W
R
SUSY




nd





en
A(Z,N)

A(Z
1,N
1)
e
n

e
˜
q

˜
n

0  n˜ 
1j1

   
e n e 1j1 
˜0





 
e
e
˜



 
Vcs Vcb s 
CKM
Unitarity
 
Vts Vtb b
CKM, (g-2),
MW, Mt ,…
b
F

F
APV
l2
G
 Vud 1 Drb  Dr 
G
e
j
L

ub

e d
M˜ L  Mq˜ L
Kurylov,
No
long-lived LSPSUSY
or SUSY
loops
DMR-M
SUSY
RPV

UCNA
CKM Summary: PDG04
CKM Summary: New Vus & tn ?
New tn !!
Vus & Vud
theory ?
UCNA
New 0+
info
Probing SUSY with Lepton Scattering
Parity-Violating electron scattering
e



e
Z

0
e , p
e

e , p
e , p
e

e , p

2
GF Q 
2
A 
QW  F(Q ,q )

4 2

LR
“Weak Charge” ~ 1 - 4 sin2 qW ~ 0.1
2
g(

)
Y
sin 2 qW 
g() 2  g()Y2
Weak Mixing Angle: Scale Dependence
Czarnecki, Marciano
Erler, Kurylov, MR-M
Atomic PV
nN deep inelastic
sin2qW
e+e- LEP, SLD
SLAC E158 (ee)
JLab Q-Weak (ep)
(GeV)
SUSY Radiative Corrections
e
Z
Propagator

e
e

Vertex &
Externalleg
0


˜



e˜ 

˜  


Z 

e





e
˜


e

f



f˜
f

˜
e


˜

˜e
n


 
˜e
n


e
f
f

e

 

˜

0
e
f
0
e˜ 

Z

˜0


Box

e˜ 
e
f
˜





f

Z0
f



f
f

Kurylov, R-M, Su
Comparing
Qwe
and
˜q˜

QWp
Z

105 parameters:
What
about
RPV ?
random
scan

0
˜q˜


SUSY
SUSY
loopsloops
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
3000 randomly chosen
SUSY parameters but
effects are correlated
Effects in sin2qW dominate
Kurylov, Su, MR-M
Negligible SUSY
loop impact on
cesium weak
charge
Comparing Qwe and QWp
SUSY loops
SUSY
dark matter
0 ->
QuickTime™ and a TIFF (Uncompressed)
e+ne decompressor are needed to see this picture.
n is Majorana
RPV 95% CL fit to
weak decays, MW, etc.
Kurylov, Su, MR-M
Comparing Qwe and QWp
Can be a diagnostic tool to determine
whether or not
• the early Universe was supersymmetric
• there is supersymmetric dark matter
The weak charges can serve a similar
diagnostic purpose for other models for
high energy symmetries, such as leftright symmetry, grand unified theories
with extra U(1) groups, etc.
Additional PV electron scattering ideas
Czarnecki, Marciano
Erler et al.
Atomic PV
Linear
Collider e-e-
nN deep inelastic
DIS-Parity, JLab
sin2qW
e+e- LEP, SLD
SLAC E158 (ee)
JLab Q-Weak (ep)
Moller, JLab
(GeV)
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Are they their own antiparticles?
LFV & LNV ?
Why are their masses so small?
Can they have magnetic moments?
Implications of mn for neutrino interactions ?
Neutrinos ?
Beyond the SM
SM symmetry (broken)

Lepton Flavor & Number Violation
e

Present universe

Early universe
 Y1


MEG: B!e ~ 5 x
e
 
AZ,N 
R=
10-14

MECO: B!e~ 5 x
Also PRIME
AZ,N 
B!e
 1
L


B!e
 1
S
?
?
log10 ( / 0 )
10-17
Weak scale
Planck scale
Lepton Flavor & Number Violation
0nbbdecay

e


u



u
d
MEG:
LightBnM
~ 5 x 10-14?
!eexchange


W

d
e
e

nM
u W

 

Raidal, Santamaria;
Cirigliano, Kurylov, RM, Vogel
e
AZ,N 

e˜




d
e
e


e˜ 
e
u
AZ,N 
d


Heavy particle exchange
?
-17
MECO:
B
~
5
x
10
!e


˜
n

0



e
e
e




e
e
 * 
Logarithmic enhancements of R

Low scale LFV: R ~ O(1)

 * 
D

GUT scale LFV: R ~ O
Neutrino Mass & Magnetic Moments
How large is n ?
Experiment: n < (10-10 - 10-12) B
Bell, Cirigliano, R-M,
Vogel, Wise
Davidson, Gorbahn,
Santamaria
e scattering, astro limits
Radiatively-induced mn
n < 10-14 B
Dirac
ne < 10-9 B Majorana
Muon Decay & Neutrino Mass
3/4
0
3/4
1
TWIST (TRIUMF)
Muon Decay & Neutrino Mass
Model Independent
Analysis
0
0
H
H
n

H
0

H0
Z,W
n

Prezeau, Kurylov 05



2005 Global fit: Gagliardi et al.
n
n

mn
Erwin, Kile, Peng, R-M 06


MPs
constrained by mn
Model Dependent Analysis
n
W




1,2

P
ne
Also b-decay,
Higgs production
e

TWIST P

TWIST 

First row CKM
P



MWR (GeV)
Conclusions
• Precision nuclear physics studies of fundamental
symmetries and of neutrino properties -together with careful theoretical analysis -- are
providing a powerful probe of the fundamental
symmetries of the early universe
• The information obtained from these studies
complements what we learn from high energy
collider experiments
• We can look forward to many interesting experimental
results and theoretical developments