Probing the Fundamental Symmetries of the Early Universe

Download Report

Transcript Probing the Fundamental Symmetries of the Early Universe

Chiral Symmetries and Low Energy
Searches for New Physics
M.J. Ramsey-Musolf
Caltech
Wisconsin-Madison
Qu i c k T i m e ™ a n d a
T I F F (Un c o m p re s s e d ) d e c o m p re s s o r
a re n e e d e d to s e e th i s p i c t u re .
Fundamental Symmetries & Cosmic History
• What were the fundamental symmetries that
governed the microphysics of the early
universe?
• Were there additional (broken) chiral symmetries?
• What insights can low energy (E << MZ) precision
electroweak studies provide?
• How does the approximate chiral symmetry of
QCD the affect low energy search for new
symmetries?
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Beyond the SM
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
Electroweak
symmetry
Puzzles the Standard
Model
can’t solve
breaking: Higgs ?
1.
2.
3.
4.
Origin of matter
Unification & gravity
Weak scale stability
Neutrinos
Beyond the SM
What are the symmetries
(forces) of the early
universe beyond those of
the SM?
SM symmetry (broken)
What are the new fundamental
symmetries?
Two frontiers in the search
Collider experiments
Indirect searches at
(pp, e+e-, etc) at higher
lower energies (E < MZ)
energies (E >> MZ)
but high precision
Large Hadron Collider
Ultra cold neutrons
CERN
High energy
physics
LANSCE, NIST, SNS, ILL
Particle, nuclear
& atomic physics
What are the new fundamental symmetries?
•
Why is there more matter than antimatter
in the present universe?
Electric dipole moment & dark matter searches
•
What are the unseen forces that
disappeared from view as the universe
cooled?
Precision electroweak: weak decays & e- scattering
•
What are the masses of neutrinos and
how have they shaped the evolution of the
universe?
Neutrino interactions & 0nbb-decay
Tribble report
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Baryogenesis: When?
SUSY? Neutrinos? CPV?
WIMPy D.M.: Related
to baryogenesis?
“New gravity”? Grav
baryogenesis?
?
Weak scale
baryogenesis can be
Beyond
the SM
tested
experimentally
SM symmetry (broken)
Cosmic Energy Budget
What is the origin of baryonic matter ?
Cosmic Energy Budget
E
Chiral odd
d  dS
Dark Matter
SU(2)L x U(1)Y invariant for L >> Mweak

SM CPV Yukawa suppressed
Beyond
BaryonsSM CPV may not be (e.g., SUSY)

n EDM
B (7.3 2.5) 1011
YB  
s (9.2 1.1) 1011
BBN
WMAP
Dark Energy

dS E

h
T-odd , CP-odd
by CPT theorem
What are the
Searches
for permanent
quantitativeelectric
implications
dipoleof new
moments
EDM
experiments
(EDMs) of
forthe
explaining
neutron,the
electron,
origin of
andbaryonic
the
neutral atoms
component
probe of
new
theCP-violation
Universe ?

EDM Probes of New CP Violation
CKM
f
e
n
199
Hg

dSM
dexp
dfuture
 1040
 1030
 1.6 1027
 3.0 1026
 1031
 1029
 1033
 1028
 2.11028
 1.11018
 1032
 1024
Also 225Ra, 129Xe, d
If new EWK CP violation is responsible for abundance
of matter, will these experiments see an EDM?
Baryogenesis: New Electroweak Physics
90’s:
Weak Scale Baryogenesis
• B violation
Cohen, Kaplan, Nelson
Joyce, Prokopec, Turok
Unbroken phase
Topological transitions
• C & CP violation
• Nonequilibrium
dynamics
(x)
new
Broken phase
1st order phase 
transition

CP Violation
Scale Hierarchy:
Expand in energy &
time scale
ratios
new
Sakharov, 1967
Theoretical
Issues:
Transport at phase boundary (non-eq QFT)
Cirigliano, Lee, R-M
new

Is it viable?
Bubble •dynamics
(numerical)
Strength• Can
of phase
transition
(Higgs it?
sector)
experiment
constrain
new
 
EDMs: many-body
physics
& QCD
• How reliably
can we
compute it?
e


Baryogenesis & Dark Matter: SUSY
Supersymmetry
Fermions
Bosons
e L,R , q L,R
e˜ L,R , q˜ L,R
gauginos
˜ , Z˜ ,
˜, g
˜
W
W , Z , , g
Higgsinos
˜ ,H
˜
H
u
d
sfermions
H u, H d

0
˜
˜
˜
˜
˜
˜
W, Z ,, Hu, d   , 

Charginos,
neutralinos
Baryogenesis & Dark Matter: SUSY
Chargino Mass Matrix
T << TEW
CPV
M2
0
M
N
C =11B +N12W
mW 2 sin b
BINO
new
mW 2 cosb
0+N H 0+N H 0
13 d
14 u
WINO


M1
0
background field

HIGGSINO
Neutralino Mass Matrix
MN =
T ~TEWT:~scattering
TEW
~ ~
(xH,W
)
of
from
T << TEW : mixing
~ ~
~0
of H,W to ~+,
q , W˜ , B˜ , H˜ u,d
0
-mZ cos bsin qW
mZ cos bcos qW
M2
mZ sin bsin qW
-mZ sin bsin qW
-mZ cos bsin qW
mZ cos bcos qW
0
-
mZ sin bsin qW
-mZ sin bsin qW
-
0

EDM constraints & SUSY CPV
Neutralino-driven
baryogenesis
Baryogenesis
LEP II Exclusion
| sin  | > 0.02
| de , dn | > 10-28 e-cm
M < 1 TeV
Two loop de
Cirigliano,
Profumo, R-M
SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2
Dark Matter: Future Experiments
Assuming
W ~WCDM
Cirigliano,
Profumo, R-M
Precision Ewk Probes of New Symmetries
Electroweak
symmetry?
Unseen Forces:
Supersymmetry
breaking: Higgs ?
1.
2.
3.
4.
Unification & gravity
Weak scale stability

Origin of matter
Neutrinos
n
˜
n
˜0





Beyond the SM
ne

˜

W

e

SM symmetry (broken)
Weak decays & new physics
CKM unitarity ?
See Moulson, Cirigliano
R Parity Violation
R-M,
V Flavor-blind
dSu
VKurylov,
VSUSY-
d  u e ne
ud
us
breaking

u c t Vcd

Vtd
M
s  u e ne

b  u e ne
n
ne
O
˜
+
+
~ 0.001

SM
 12k ˜

12k

n  p e ne e n O

e
b-decay
e˜
˜
n
0

ne
W
k
W
R
SUSY




nd




+
en
A(Z,N)

A(Z
1,N
+1)
e
n

e
˜
q

˜
n
+
0 + n˜ 
1j1

   
e n e 1j1 ++
˜0





 
e
e
˜



 
Vcs Vcb s 
CKM
Unitarity
 
Vts Vtb b
CKM, (g-2),
MW, Mt ,…
b
F

F
APV
l2
G
 Vud 1+ rb  r 
G
e
j
L

ub

e d
M˜ L  Mq˜ L
Kurylov,
No
long-lived LSPNew
or SUSY
physics
DMR-M
SUSY
RPV

Correlations
Weak decays & SUSY
Vud

u c t Vcd

Vtd
d  u e ne
s  u e ne
b  u e ne
n
ne
˜
n



W
˜0





˜



d

pe  pn
pnpe
dW 1+ a Bme E+e An n  ++
E e En
EEn e
ne

u˜

SUSY
e
˜0

u

O
+ ~ 0.001
 OSM

Vus Vub d
 
Vcs Vcb s 
 
Vts Vtb b
˜



+ 
˜e
n

e
SUSY

Non (V-A) x (V-A)
interactions: me/E
b-decay at SNS,“RIAcino”?
Weak decays & SUSY : Correlations
Profumo, R-M, Tulin
Large L-R mixing:
New models for
SUSY-breaking
SUSY loop-induced operators
Future
exp’t ?
with mixing between L,R
chiral supermultiplets
Yukawa suppressed
L-R mixing:
“alignment” models
Pion leptonic decay & SUSY

SM radiative corrections
important for precise F
Holstein, Marciano & Sirlin
A non-zero NEW would shift F



+
n


 RPV SUSY
Pion leptonic decay & SUSY
New TRIUMF, PSI

Leading QCD uncertainty:
Marciano
& Sirlin
˜0

u
ne
˜e
n
u˜

d

˜






e
˜0

u
 do 
?
Can we
better on


 Tulin, Su, R-M


˜





˜
n

d

Prelim
n
u˜
vs
+
n
Probing Slepton Universality




Min

(GeV)
Lepton Scattering & New Symmetries
Parity-Violating electron scattering
e



e
Z

0
e , p
e

e , p
e , p
e

e , p

2
GF Q 
2
A 
QW + F(Q ,q )

4 2

LR
“Weak Charge” ~ 1 - 4 sin2 qW ~ 0.1
Probing SUSY with PV eN Interactions
e
Z

SUSY
dark matter
e


˜

0

Z0
+
˜ + 


 


f
SUSY loops



e˜ 
e
f
e



 e˜

+


f
+
f

QWp,SUSYQuickTime™
QWp,SM and a TIFF (Uncompressed) decompressor are needed to see this picture.
n is Majorana
ne
e
˜ Rk
e
Q
e,SUSY
W
Kurylov, Su, MR-M
RPV 95% CL fit to
12k decays, M ,etc.
12k
weak
W
n
e, SM
W
Q


Probing SUSY with PV eN Interactions
Kurylov, R-M, Su
“DIS Parity”
SUSY loops
SUSY
N SUSY
dark
darkmatter
matter
E158 &QWeak
QWp,SUSYQuickTime™
QWp,SM and a TIFF (Uncompressed) decompressor are needed to see this picture.
Linear
collider
JLab Moller
RPV 95% CL
QWe,SUSY QWe, SM
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Are they their own antiparticles?
LFV & LNV ?
Why are their masses so small?
Can they have magnetic moments?
Implications of mn for neutrino interactions ?
Neutrinos ?
Beyond the SM
SM symmetry (broken)
Neutrino Mass & Magnetic Moments
How large is n ?
Experiment: n < (10-10 - 10-12) B
e scattering, astro limits
Radiatively-induced mn
Bell, Cirigliano,
Gorshteyn,R-M,
Vogel, Wang, Wise
Davidson, Gorbahn,
Santamaria
Both operators chiral odd
n < 10-14 B
Dirac
ne < 10-9-10-12 B Majorana
Muon Decay & Neutrino Mass
3/4
0
3/4
1
TWIST (TRIUMF)
Correlations in Muon Decay & mn
Model Independent
Analysis
0
0
H
H
n

H
0

Z,W
n

Prezeau, Kurylov 05



2005 Global fit: Gagliardi et al.
n
H0
n
n

e

Erwin, Kile, Peng, R-M 06
Constraints
on non-SM




e+
mn
Higgs production at ILC: MPs
constrained by mn
Model Dependent Analysis
n
W




1,2

mn ,  and bdecay corr
P
ne
Also b-decay,
Higgs production
e

TWIST P

TWIST 

First row CKM
P



MWR (GeV)
Neutrino Mass & 0nbb - decay
e
e

e

AZ,N 
u



AZ + 2,N  2

nM
W
W


d

u
d


e
e
Light nM : 0nbb-decay
 rate may
0 scale of
 yield

mn e˜ 
u
e˜ 

How do we compute & separate
 exchange effects?
heavy particle
e
u

EFF
2
mn
  Uek mk e2i

d
k
d
Neutrino Mass & 0nbb - decay
How do we compute & separate
heavy particle exchange effects?
e
 
u
d 
AZ,N
e
e
ee
u

u
 



AZ + 2,Nd 2

4 quark operator:
low energy EFT


e
nM
W

d


e

u

W
e˜ 

d

e
  0
e˜ 

d
u
d
u
Neutrino Mass & 0nbb - decay
e

 

u

N 

e
e
0
d
N

e 2

u

W



d
L(q,e)
=



e

e˜
Oˆ1+++ (3L , 3R )

u
d

e 
W
N
N
Kˆ ++NN p1
e

N
 3+
K NNNN p 0 No WR - WL
u
Oˆ  (3
+ 
h.c.
L , 3R )
++
G d
++
c
ˆ

C j () O j 1+e  j e
L bbj1
2
F
14

RPV SUSY
N
O  (5L , 1R )  (1L, 5R )

nM
e
e

 
K  p




e˜ 
e

mixing
R-M,
WPrezeau,
R - WL mix
& Vogel

Chiral properties of Oj++


determine p-dependence
of K ,KNN , KNNNN
Oˆ1+++  (3L , 3R )
K ~ O (p0)
++
Oˆ 3+
 (5, 1)  (1, 5)
K ~ O (p2)
Conclusions
• Low energy probes of physics beyond the SM give us
a unique window on the fundamental symmetries of the
early universe that complements direct searches for new
physics at colliders
•These symmetries - including broken chiral symmetries
- are needed to explain the origin of matter, provide for
stability of the electroweak scale, incorporate new forces
implied by unification, and account for the properties of
neutrinos
• The broken chiral symmetry of QCD also provides an
important tool for sharpening Standard Model
predictions for low energy observables and making any
deviations interpretable in terms of new symmetries