Transcript Document

Electric Dipole Moments and
the Origin of Baryonic Matter
M.J. Ramsey-Musolf
V. Cirigliano
C. Lee
S. Tulin
S. Profumo
Caltech
INT
Caltech
Caltech
PRD 71: 075010 (2005) &
hep-ph/0603058
What is the origin of baryonic matter ?
Cosmic Energy Budget
Dark Matter
Baryons
Dark Energy
Explaining non-zero rB requires CP-violation
beyond that of the Standard Model (assuming
inflation set rB=0)
What is the origin of baryonic matter ?
Cosmic Energy Budget
E
d  dS
Dark Matter


Baryons
 EDM
Dark Energy

dS E

h
T-odd , CP-odd
by CPT theorem
What are the
Searches
for permanent
quantitativeelectric
implications
dipoleof new
moments
EDM
experiments
(EDMs) of
forthe
explaining
neutron,the
electron,
origin of
andbaryonic
the
neutral atoms
component
probe of
new
theCP-violation
Universe ?
Baryogenesis and EDMs: Theoretical Tasks
• Attaining reliable computations that relate particle
physics models of new CP-violation to EDMs of
complex systems (neutron, atoms, nuclei)
Nonperturbative QCD, atomic & nuclear structure
• Attaining reliable computations of the baryon asymmetry
from fundamental particle physics theories with
new CP-violation
• Non-equilibrium quantum transport
• Non-zero T and m
• Spacetime dynamics of cosmic phase transitions
Equally difficult but less studied
This talk
Outline
1. Overview
2. Theory: Non-equilibrium QFT
& quantum transport
How to compute rB
systematically from Lnew
3. Phenomenology
Connecting rB, EDMs,
and dark matter
4. Outlook & Open Issues
Baryon Asymmetry of the Universe (BAU)
b
 0.024  0.001
(7.3  2.5) 1011
YB 
 
s
(9.2  1.1) 1011
rB
BBN
WMAP
Baryogenesis: Ingredients
Present universe
Early universe
Sakharov Criteria
• B violation
• C & CP violation
 Y1

• Nonequilibrium
dynamics
Sakharov, 1967
 1
L

 1
S

log10 (m / m0 )
Weak scale
Planck scale
Baryogenesis: Ingredients
Hˆ , Cˆ  0 , Hˆ , Cˆ Pˆ  0
Sakharov Criteria
  
ˆ Hˆ ,t Bˆ  0
Tr r
• B violation
• C & CP violation


• Nonequilibrium
dynamics
Sakharov, 1967


Hˆ , Cˆ Pˆ Tˆ  0


Tr e

  Hˆ

Bˆ  0
Baryogenesis: Ingredients
Present universe
Early universe
Sakharov Criteria
• B violation
• C & CP violation
 Y1

• Nonequilibrium
dynamics
Sakharov, 1967
 1
L


Weak scale
baryogenesis can be
tested experimentally
 1
S
?
?
log10 (m / m0 )
Weak scale
Planck scale
Leptogenesis
Early universe
Key Ingredients
Present universe
• Heavy R
 Y1
• mspectrum
• CP violation
Leptogenesis

• L violation
-decay, 0decay, q13
 1
S

Weak scale
log10 (m / m0 )
Planck scale
EW Baryogenesis: Standard Model
Weak Scale Baryogenesis
Anomalous Processes
• B violation
• C & CP violation
JmB
• Nonequilibrium
dynamics
A
qL

Sakharov, 1967
W

W
Different vacua: D(B+L)= DNCS
Kuzmin, Rubakov, Shaposhnikov
McLerran,…



Sphaleron Transitions
EW Baryogenesis: Standard Model
Shaposhnikov
2
J  s12 s13 s23 c12 c13
c 23 sin13
 (2.88 0.33) 105
Weak Scale Baryogenesis
mt4 mb4 mc2 ms2
13

3
10
MW4 MW4 MW2 MW2
• B violation
• C & CP violation
• Nonequilibrium
dynamics


Sakharov, 1967
F
F
1st order

2nd order


• CP-violation too weak
• EW PT too weak
Increasing mh



Baryogenesis: New Electroweak Physics
Weak Scale Baryogenesis
• B violation
Unbroken phase
Topological transitions
new
• C & CP violation
• Nonequilibrium
dynamics
(x)
Broken phase

1st order phase 
transition
CP Violation
Sakharov, 1967
new
• Is it viable?
• Can experiment constrain it?
• How reliably can we compute it?

new


new
e


EDM Probes of New CP Violation
CKM
f
e
n
199
Hg
m
dSM
dexp
dfuture
 1040
 1030
 1.6 1027
 6.3 1026
 1031
 1029
 1033
 1028
 2.11028
 1.11018
 1032
 1024
Also 225Ra, 129Xe, d
If new EWK CP violation is responsible for abundance
of matter, will these experiments see an EDM?
II. Theory: Systematic
Baryogenesis
Present n-EDM limit
Proposed n-EDM limit
?
Matter-Antimatter
Asymmetry in
the Universe
Better theory
M. Pendlebury
B. Filippone
“n-EDM has killed more theories than any other single experiment”
Baryogenesis and EDMs: Better Theory ?
Non-equilibrium quantum transport
RHIC
Violent departure
from equilibrium
Electroweak Baryogenesis
new
(x)
“Gentle” departure from
equilibrium
Systematic treatment of
transport dynamics w/
controlled approximations
Systematic Baryogenesis
Goal: Derive dependence of YB on parameters
Lnew systematically (controlled approximations)
Parameters in Lnew
CPV phases
Bubble & PT
dynamics
Departure from equilibrium
• Earliest work: QM scattering & stat mech
• New developments: non-equilibrium QFT
Systematic Baryogenesis
Unbroken phase
(x)
Topological transitions
“snow”
Broken phase
1st order phase transition
Cohen, Kaplan,
Nelson
Joyce, Prokopec,
Turok
nL produced in wall
& diffuses in front
rB
 D 2rB  WS FWS (x)nL (x)  RrB 
t
FWS (x) !0 deep inside bubble
JmB
qL

W

W
Systematic Baryogenesis
Riotto
Carena et al
Lee, Cirigliano,
Tulin, R-M
Unbroken phase
(x)
Topological transitions
Compute from first
principles given Lnew
Broken phase

1st order phase transition
ni
˜
 D 2ni  Sn j ,T,, M
t
Quantum Transport Equation



G˜
G˜ 0

=
˜

G˜ 0

G˜ 0
+
+
+…
Schwinger-Dyson Equations
Systematic Baryogenesis
Departure from equilibrium
• Non-adiabatic evolution of states
& degeneracies
G˜



G˜ 0

=
˜

G˜ 0

G˜ 0
+
+
+…
Generalized Green’s Functions: Closed Time Path
• Non-thermal distributions
Exploit scale hierarchy: expand in scale ratios e
Non-equilibrium Quantum Field Theory
Closed Time Path (CTP) Formulation
Oˆ (x)   rnn' n SI TOˆ (x)SI n'
n

SI  T exp i  d 4 x LI


Conventional, T=0 equilibrium field theory:

rnn'  n 0 n' 0
Oˆ (x)  0 SI TOˆ (x) SI 0

Non-equilibrium Quantum Field Theory
Two assumptions:
0
• Non-degenerate spectrum
• Adiabatic switch-on of LI
0 OUT
IN
LI

ˆ (x)   0 S n n TO
ˆ (x) S 0
O
I
I
n

ˆ (x) S 0 
 0 SI 0 0 TO
I
ˆ (x) S 0
0 TO
I
0 SI 0
Non-equilibrium T>0 Evolution
Generalized Green F’ns
0
• Spectral degeneracies
• Non-adiabaticity
0 OUT
IN
LI

˜
 ˜ 0
0
0
˜
˜
˜
ˆ
G
G
G
G [ ]n'
O(x)   rnn' n SI [ ]TOˆ (x)S
I +
=
n



+ -



+
t



G
(x,
y)
G
(x,
y)
*
G˜ (x, y)  P a (x) b (y)  ab   

t
G (x, y) G (x, y)
+…
Scale Hierarchy
T > 0: Degeneracies
g
q
q
Time Scales
M(T)
P(T)
P ~ 1/P


Plasma time:
vW > 0: Non-adiabaticity

t˜L
vW
Decoherence time:
d ~ 1/vW k)
e.g., particle in an
expanding box
Quantum Decoherence
L DL
L
 (x)  An sin kn x
0
n

n
kn 
L
 n
0
n
k = kEFF(,Lw)
2
n=1
n=2

n=3
L  DL
L
Scale Hierarchy
Time scales:
int ~ 1/w
P ~3Cf T/ 8
k / w1
P ~ 1/P
d ~ 1/(vwk)
w2~m2 +2Cf T2 + k2
vw ~ 0.1
ep = int / P ~ P / w
<< 1
ed = int / d ~ vwk / w
<< 1
Energy scales:
em  m/T
<< 1
Quantum Transport Equations
m
X m
 j

G˜ 
(X)
= d
3

+0 
˜ 0X 0
G
z dz

˜

0
(X,z) GG˜(z,X)  G (X,z)  (z,X) 
˜ 0
G




Approximations
• neglect O(e3) terms
+

+…
Expand
in ed,p,m
Chiral
From
S-D Equations:
Producing
nL = 0
Relaxation
CPV
•• S
SCPV
Riotto, Carena et
al, Lee et al
Strong
sphalerons
•• M
, H ,, YY , SS
M, H
Lee et al
Currents
Numerical work:
CP violating
• SS sources
Links CP violation in Higgs
and baryon sectors
III. Phenomenology: YB, EDM’s,
and Dark Matter
SUSY: a candidate symmetry of the
early Universe
Supersymmetry
Fermions
Bosons
e L,R , q L,R
e˜ L,R , q˜ L,R
gauginos
˜ , Z˜ ,
˜, g
˜
W
W , Z , , g
Higgsinos
˜ ,H
˜
H
u
d
sfermions
Hu , H d
H

0
˜ , Z˜ ,
˜  
˜, H
˜
˜
W
,

 u, d

Charginos,
neutralinos
SUSY and R Parity
If nature conserves
PR
PR  1
3(BL)
1
2S
vertices have even
number of superpartners
Consequences
0
˜
 Lightest SUSY particle  
is stable
viable dark matter candidate
 Proton is stable
 Superpartners appear only in loops
Systematic Baryogenesis: MSSM
F
F
1st order

2nd order
LEP EWWG


Increasing mh



1st order PT in MSSM:
mh < 120 GeV
mh>114.4 GeV
Constraint on mh relaxed for
larger gauge/Higgs sector
(NMSSM, etc.)
See, e.g., Kang
et al for U(1)’
or ~ 90 GeV
(SUSY)
Systematic Baryogenesis: MSSM
SUSY mass parameter
H˜ u
H˜ d
Hu
Hd
m

m
 Soft SUSY-breaking mass parameters


B˜ ,W˜ ,W˜ 0, g˜

M1,2,3
f˜
H
f˜
f˜
M
2
L,R
Hu
Hd
f˜
Af
b0
Systematic Baryogenesis: MSSM
Chargino Mass Matrix
MC =
T ~TEW : scattering
~ ~
of H,W from
background field
mW 2 cos
M2
mW 2 sin 
m
T << TEW : mixing
~ ~
~0
of H,W to ~,
Neutralino Mass Matrix
M1
MN =
0
0
-mZ cos sin qW
mZ cos cos qW
M2
mZ sin sin qW
-mZ sin sin qW
-mZ cos sin qW
mZ cos cos qW
0
-m
mZ sin sin qW
-mZ sin sin qW
-m
0
Systematic Baryogenesis: MSSM
Sfermion mass matrix
˜ 2˜
M
fL
2
ˆ

M 
2
M

 LR
2 
M LR

2
˜ ˜ 
M
f R 
m f ( m t an  A f )
M  
m f ( m cot   A f )
2
LR
T ~TEW : scattering
~ ~
of fL, fR from
background field
T << TEW : mixing
~ ~
~ ~
of fL, fR to f1, f2
Qf < 0
Qf > 0
Supersymmetric Sources (mSUGRA)
q , W˜ , B˜ , H˜ u,d
q˜
LI yt t˜L t˜R* At u  m* d  h.c.

CPV phases: A , m

Supersymmetric Sources (mSUGRA)
q , W˜ , B˜ , H˜ u,d

q˜

LI  g2 H˜   d (x) PL   u (x)e



iq m

PR W˜ 
1
iq
H˜   d (x) PL   u (x)e m PR
2
g 
2
CPV phase: m
W˜ 0
 g1B˜  h.c.
Supersymmetric Sources (mSUGRA)
Approximations
• neglect O(e3) terms
• supergauge equilibrium:
q , W˜ , B˜ , H˜ u,d

mV˜  0 , m f  m f˜
q˜
• Higgs vev expansion

Xm j m 5 (X)   d 3 z  dz0  (X,z) S  (z, X)  S  (X,z)  (z, X)
Neutral gauginos =

Majorana fermions
X0
 S (X,z)  (z,X)   (X,z) S (z,X) 2i m (x)  5 (x)



Supersymmetric Sources (mSUGRA)
Approximations
Previous work:
• neglect O(e3) terms
(-,+)

>>

Y
• supergauge
equilibrium:
Effect
m decouples:
0, m m
V˜
f
f˜
mL  mR  mH ~ O 1 Y 
• Higgs vev expansion
S
CPV
0

Links rB to Higgsinos
SCP ~ Y mL  mR  mH  


• Yukawa decoupling
O (em ep)

Supersymmetric Sources (mSUGRA)
W ,Approximations
B
• neglect O(e3) terms
q˜ , H
• supergauge equilibrium:

mV˜  0 , m f  m f˜

q , H˜
W˜ , B˜
(Super) gauge interactions

• Higgs vev expansion

• Yukawa decoupling
• Fast supergauge int
SUSY Inputs
1. Strong 1st order PT: light stop
2. rparameter: heavy LH stop
3. mh < 120 GeV:
100 GeV  mt˜  mt
At  m cot   0.6 mt˜L
4. Bubble wall parameters:

Lw  25 /T ,  w  0.05
5. Illustrative choice:

M2  At  200GeV , mt˜L 1TeV , tan0  0.015
Baryon Number
YB 


rB
s
 F1 sin  m  F2 sin( m   A )
SCPV
WS
H˜
F1 
 diff
StCPV
WS
˜
F2 
 diff
Higgsinos
Squarks

Resonant CPV & Relaxation
Sˆ H˜
CP violation
R


m (GeV)
MW˜

Relaxation
MW˜
Huet &
Nelson
m (GeV)
SCPV
WS
H˜
F1 
 diff
Baryon Number
F1 YBWMAP
F2 YBWMAP
Mt˜R

MW˜
MSSM EWB:
Higgsino-Gaugino
driven
Precision
electroweak
m (GeV)
YB 
rB
s

 F1 sin  m  F2 sin( m   A )

mt˜L (GeV)
3
F
F
~
10
 2 1
Baryon Number & Y
YB 
rB
s
 F1 sin  m  F2 sin( m   A )
our Y
previous Y

m
tR
H
Cirigliano, Lee, R-M, Tulin
tL
tL
g
Joyce, Prokopec, Turok
Baryon Number & Y
YB 
rB
s
 F1 sin  m  F2 sin( m   A )
Previous work

Res
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
Non-Res
tR
H
tL
tL
g
EDM constraints & SUSY CPV
Lee et al
Near degeneracies
resonances
BBN
WMAP
(x)
new

de
A

de
199Hg
A
199Hg
BAU
BAU


m
new
m
new
Different choices for SUSY parameters






new
e

EDM constraints & SUSY CPV
Future: EDMs & LHC
Dark Matter Constraints
A
de
BBN
WMAP
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
dn
m

m
BAU-DM
LargeHadron
HadronCollider
Collider
Large

Lee et al
EDM constraints & SUSY CPV
One-loop de & slepton mass
BBN
Heavier sleptons: weaker
one-loop EDM constraints &
less resonant baryogenesis
EDM constraints & SUSY CPV
One-loop vs. Two-loop EDMs
e˜


0
e˜

e


EDM constraints & SUSY CPV
Neutralino-driven
baryogenesis
Baryogenesis
LEP II Exclusion
Two loop de
SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2
Relic Abundance of SUSY DM
T << TEW : mixing
~ ~
~0
of H,W to ~,
Neutralino Mass Matrix
M1
MN =
0
0
-mZ cos sin qW
mZ cos cos qW
M2
mZ sin sin qW
-mZ sin sin qW
-mZ cos sin qW
mZ cos cos qW
0
-m
mZ sin sin qW
-mZ sin sin qW
-m
0
N11B 0N12W 0N13Hd0N14Hu0
BINO
˜ 10

t
t˜

˜ 10


+ res
t
WINO
HIGGSINO
~10
~ 0 , ~ 
i
~10
W,Z
+ coannihilation
j
W,Z
Dark Matter: Relic Abundance
˜10

t˜

Neutralino-driven
baryogenesis
t
suppressed
˜10

t




~10
LEP II Exclusion
W,Z
~i0 , ~ j
~ 0
1
too fast
Non-thermal 0
W,Z
SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2
Dark Matter: Neutrinos in the Sun
˜0

Z0
˜0







Neutralino-driven
baryogenesis

SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2
Dark Matter: Future Experiments
Summary & Outlook
• EWB remains a viable option for explaining the cosmic
baryon asymmetry that can be tested and constrained
using EDMs, precision electroweak, and collider input
• New developments using non-equilibrium QFT are putting
YB computations on a more systematic footing that will
allow for detailed confrontations with lab experiments
• Considerable (hard) work remains to be completed
Complete set of transport coefficients, refined studies of bubble
dynamics, applications to various scenarios for new CP-violation,
phenomenology (EDM, Dark Matter, B physics, precision
electroweak, collider)
• Exciting field involving an interplay between cosmology and
particle/nuclear physics in both theory and experiment