Transcript Document
Electric Dipole Moments and the Origin of Baryonic Matter M.J. Ramsey-Musolf V. Cirigliano C. Lee S. Tulin S. Profumo Caltech INT Caltech Caltech PRD 71: 075010 (2005) & hep-ph/0603058 What is the origin of baryonic matter ? Cosmic Energy Budget Dark Matter Baryons Dark Energy Explaining non-zero rB requires CP-violation beyond that of the Standard Model (assuming inflation set rB=0) What is the origin of baryonic matter ? Cosmic Energy Budget E d dS Dark Matter Baryons EDM Dark Energy dS E h T-odd , CP-odd by CPT theorem What are the Searches for permanent quantitativeelectric implications dipoleof new moments EDM experiments (EDMs) of forthe explaining neutron,the electron, origin of andbaryonic the neutral atoms component probe of new theCP-violation Universe ? Baryogenesis and EDMs: Theoretical Tasks • Attaining reliable computations that relate particle physics models of new CP-violation to EDMs of complex systems (neutron, atoms, nuclei) Nonperturbative QCD, atomic & nuclear structure • Attaining reliable computations of the baryon asymmetry from fundamental particle physics theories with new CP-violation • Non-equilibrium quantum transport • Non-zero T and m • Spacetime dynamics of cosmic phase transitions Equally difficult but less studied This talk Outline 1. Overview 2. Theory: Non-equilibrium QFT & quantum transport How to compute rB systematically from Lnew 3. Phenomenology Connecting rB, EDMs, and dark matter 4. Outlook & Open Issues Baryon Asymmetry of the Universe (BAU) b 0.024 0.001 (7.3 2.5) 1011 YB s (9.2 1.1) 1011 rB BBN WMAP Baryogenesis: Ingredients Present universe Early universe Sakharov Criteria • B violation • C & CP violation Y1 • Nonequilibrium dynamics Sakharov, 1967 1 L 1 S log10 (m / m0 ) Weak scale Planck scale Baryogenesis: Ingredients Hˆ , Cˆ 0 , Hˆ , Cˆ Pˆ 0 Sakharov Criteria ˆ Hˆ ,t Bˆ 0 Tr r • B violation • C & CP violation • Nonequilibrium dynamics Sakharov, 1967 Hˆ , Cˆ Pˆ Tˆ 0 Tr e Hˆ Bˆ 0 Baryogenesis: Ingredients Present universe Early universe Sakharov Criteria • B violation • C & CP violation Y1 • Nonequilibrium dynamics Sakharov, 1967 1 L Weak scale baryogenesis can be tested experimentally 1 S ? ? log10 (m / m0 ) Weak scale Planck scale Leptogenesis Early universe Key Ingredients Present universe • Heavy R Y1 • mspectrum • CP violation Leptogenesis • L violation -decay, 0decay, q13 1 S Weak scale log10 (m / m0 ) Planck scale EW Baryogenesis: Standard Model Weak Scale Baryogenesis Anomalous Processes • B violation • C & CP violation JmB • Nonequilibrium dynamics A qL Sakharov, 1967 W W Different vacua: D(B+L)= DNCS Kuzmin, Rubakov, Shaposhnikov McLerran,… Sphaleron Transitions EW Baryogenesis: Standard Model Shaposhnikov 2 J s12 s13 s23 c12 c13 c 23 sin13 (2.88 0.33) 105 Weak Scale Baryogenesis mt4 mb4 mc2 ms2 13 3 10 MW4 MW4 MW2 MW2 • B violation • C & CP violation • Nonequilibrium dynamics Sakharov, 1967 F F 1st order 2nd order • CP-violation too weak • EW PT too weak Increasing mh Baryogenesis: New Electroweak Physics Weak Scale Baryogenesis • B violation Unbroken phase Topological transitions new • C & CP violation • Nonequilibrium dynamics (x) Broken phase 1st order phase transition CP Violation Sakharov, 1967 new • Is it viable? • Can experiment constrain it? • How reliably can we compute it? new new e EDM Probes of New CP Violation CKM f e n 199 Hg m dSM dexp dfuture 1040 1030 1.6 1027 6.3 1026 1031 1029 1033 1028 2.11028 1.11018 1032 1024 Also 225Ra, 129Xe, d If new EWK CP violation is responsible for abundance of matter, will these experiments see an EDM? II. Theory: Systematic Baryogenesis Present n-EDM limit Proposed n-EDM limit ? Matter-Antimatter Asymmetry in the Universe Better theory M. Pendlebury B. Filippone “n-EDM has killed more theories than any other single experiment” Baryogenesis and EDMs: Better Theory ? Non-equilibrium quantum transport RHIC Violent departure from equilibrium Electroweak Baryogenesis new (x) “Gentle” departure from equilibrium Systematic treatment of transport dynamics w/ controlled approximations Systematic Baryogenesis Goal: Derive dependence of YB on parameters Lnew systematically (controlled approximations) Parameters in Lnew CPV phases Bubble & PT dynamics Departure from equilibrium • Earliest work: QM scattering & stat mech • New developments: non-equilibrium QFT Systematic Baryogenesis Unbroken phase (x) Topological transitions “snow” Broken phase 1st order phase transition Cohen, Kaplan, Nelson Joyce, Prokopec, Turok nL produced in wall & diffuses in front rB D 2rB WS FWS (x)nL (x) RrB t FWS (x) !0 deep inside bubble JmB qL W W Systematic Baryogenesis Riotto Carena et al Lee, Cirigliano, Tulin, R-M Unbroken phase (x) Topological transitions Compute from first principles given Lnew Broken phase 1st order phase transition ni ˜ D 2ni Sn j ,T,, M t Quantum Transport Equation G˜ G˜ 0 = ˜ G˜ 0 G˜ 0 + + +… Schwinger-Dyson Equations Systematic Baryogenesis Departure from equilibrium • Non-adiabatic evolution of states & degeneracies G˜ G˜ 0 = ˜ G˜ 0 G˜ 0 + + +… Generalized Green’s Functions: Closed Time Path • Non-thermal distributions Exploit scale hierarchy: expand in scale ratios e Non-equilibrium Quantum Field Theory Closed Time Path (CTP) Formulation Oˆ (x) rnn' n SI TOˆ (x)SI n' n SI T exp i d 4 x LI Conventional, T=0 equilibrium field theory: rnn' n 0 n' 0 Oˆ (x) 0 SI TOˆ (x) SI 0 Non-equilibrium Quantum Field Theory Two assumptions: 0 • Non-degenerate spectrum • Adiabatic switch-on of LI 0 OUT IN LI ˆ (x) 0 S n n TO ˆ (x) S 0 O I I n ˆ (x) S 0 0 SI 0 0 TO I ˆ (x) S 0 0 TO I 0 SI 0 Non-equilibrium T>0 Evolution Generalized Green F’ns 0 • Spectral degeneracies • Non-adiabaticity 0 OUT IN LI ˜ ˜ 0 0 0 ˜ ˜ ˜ ˆ G G G G [ ]n' O(x) rnn' n SI [ ]TOˆ (x)S I + = n + - + t G (x, y) G (x, y) * G˜ (x, y) P a (x) b (y) ab t G (x, y) G (x, y) +… Scale Hierarchy T > 0: Degeneracies g q q Time Scales M(T) P(T) P ~ 1/P Plasma time: vW > 0: Non-adiabaticity t˜L vW Decoherence time: d ~ 1/vW k) e.g., particle in an expanding box Quantum Decoherence L DL L (x) An sin kn x 0 n n kn L n 0 n k = kEFF(,Lw) 2 n=1 n=2 n=3 L DL L Scale Hierarchy Time scales: int ~ 1/w P ~3Cf T/ 8 k / w1 P ~ 1/P d ~ 1/(vwk) w2~m2 +2Cf T2 + k2 vw ~ 0.1 ep = int / P ~ P / w << 1 ed = int / d ~ vwk / w << 1 Energy scales: em m/T << 1 Quantum Transport Equations m X m j G˜ (X) = d 3 +0 ˜ 0X 0 G z dz ˜ 0 (X,z) GG˜(z,X) G (X,z) (z,X) ˜ 0 G Approximations • neglect O(e3) terms + +… Expand in ed,p,m Chiral From S-D Equations: Producing nL = 0 Relaxation CPV •• S SCPV Riotto, Carena et al, Lee et al Strong sphalerons •• M , H ,, YY , SS M, H Lee et al Currents Numerical work: CP violating • SS sources Links CP violation in Higgs and baryon sectors III. Phenomenology: YB, EDM’s, and Dark Matter SUSY: a candidate symmetry of the early Universe Supersymmetry Fermions Bosons e L,R , q L,R e˜ L,R , q˜ L,R gauginos ˜ , Z˜ , ˜, g ˜ W W , Z , , g Higgsinos ˜ ,H ˜ H u d sfermions Hu , H d H 0 ˜ , Z˜ , ˜ ˜, H ˜ ˜ W , u, d Charginos, neutralinos SUSY and R Parity If nature conserves PR PR 1 3(BL) 1 2S vertices have even number of superpartners Consequences 0 ˜ Lightest SUSY particle is stable viable dark matter candidate Proton is stable Superpartners appear only in loops Systematic Baryogenesis: MSSM F F 1st order 2nd order LEP EWWG Increasing mh 1st order PT in MSSM: mh < 120 GeV mh>114.4 GeV Constraint on mh relaxed for larger gauge/Higgs sector (NMSSM, etc.) See, e.g., Kang et al for U(1)’ or ~ 90 GeV (SUSY) Systematic Baryogenesis: MSSM SUSY mass parameter H˜ u H˜ d Hu Hd m m Soft SUSY-breaking mass parameters B˜ ,W˜ ,W˜ 0, g˜ M1,2,3 f˜ H f˜ f˜ M 2 L,R Hu Hd f˜ Af b0 Systematic Baryogenesis: MSSM Chargino Mass Matrix MC = T ~TEW : scattering ~ ~ of H,W from background field mW 2 cos M2 mW 2 sin m T << TEW : mixing ~ ~ ~0 of H,W to ~, Neutralino Mass Matrix M1 MN = 0 0 -mZ cos sin qW mZ cos cos qW M2 mZ sin sin qW -mZ sin sin qW -mZ cos sin qW mZ cos cos qW 0 -m mZ sin sin qW -mZ sin sin qW -m 0 Systematic Baryogenesis: MSSM Sfermion mass matrix ˜ 2˜ M fL 2 ˆ M 2 M LR 2 M LR 2 ˜ ˜ M f R m f ( m t an A f ) M m f ( m cot A f ) 2 LR T ~TEW : scattering ~ ~ of fL, fR from background field T << TEW : mixing ~ ~ ~ ~ of fL, fR to f1, f2 Qf < 0 Qf > 0 Supersymmetric Sources (mSUGRA) q , W˜ , B˜ , H˜ u,d q˜ LI yt t˜L t˜R* At u m* d h.c. CPV phases: A , m Supersymmetric Sources (mSUGRA) q , W˜ , B˜ , H˜ u,d q˜ LI g2 H˜ d (x) PL u (x)e iq m PR W˜ 1 iq H˜ d (x) PL u (x)e m PR 2 g 2 CPV phase: m W˜ 0 g1B˜ h.c. Supersymmetric Sources (mSUGRA) Approximations • neglect O(e3) terms • supergauge equilibrium: q , W˜ , B˜ , H˜ u,d mV˜ 0 , m f m f˜ q˜ • Higgs vev expansion Xm j m 5 (X) d 3 z dz0 (X,z) S (z, X) S (X,z) (z, X) Neutral gauginos = Majorana fermions X0 S (X,z) (z,X) (X,z) S (z,X) 2i m (x) 5 (x) Supersymmetric Sources (mSUGRA) Approximations Previous work: • neglect O(e3) terms (-,+) >> Y • supergauge equilibrium: Effect m decouples: 0, m m V˜ f f˜ mL mR mH ~ O 1 Y • Higgs vev expansion S CPV 0 Links rB to Higgsinos SCP ~ Y mL mR mH • Yukawa decoupling O (em ep) Supersymmetric Sources (mSUGRA) W ,Approximations B • neglect O(e3) terms q˜ , H • supergauge equilibrium: mV˜ 0 , m f m f˜ q , H˜ W˜ , B˜ (Super) gauge interactions • Higgs vev expansion • Yukawa decoupling • Fast supergauge int SUSY Inputs 1. Strong 1st order PT: light stop 2. rparameter: heavy LH stop 3. mh < 120 GeV: 100 GeV mt˜ mt At m cot 0.6 mt˜L 4. Bubble wall parameters: Lw 25 /T , w 0.05 5. Illustrative choice: M2 At 200GeV , mt˜L 1TeV , tan0 0.015 Baryon Number YB rB s F1 sin m F2 sin( m A ) SCPV WS H˜ F1 diff StCPV WS ˜ F2 diff Higgsinos Squarks Resonant CPV & Relaxation Sˆ H˜ CP violation R m (GeV) MW˜ Relaxation MW˜ Huet & Nelson m (GeV) SCPV WS H˜ F1 diff Baryon Number F1 YBWMAP F2 YBWMAP Mt˜R MW˜ MSSM EWB: Higgsino-Gaugino driven Precision electroweak m (GeV) YB rB s F1 sin m F2 sin( m A ) mt˜L (GeV) 3 F F ~ 10 2 1 Baryon Number & Y YB rB s F1 sin m F2 sin( m A ) our Y previous Y m tR H Cirigliano, Lee, R-M, Tulin tL tL g Joyce, Prokopec, Turok Baryon Number & Y YB rB s F1 sin m F2 sin( m A ) Previous work Res QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. Non-Res tR H tL tL g EDM constraints & SUSY CPV Lee et al Near degeneracies resonances BBN WMAP (x) new de A de 199Hg A 199Hg BAU BAU m new m new Different choices for SUSY parameters new e EDM constraints & SUSY CPV Future: EDMs & LHC Dark Matter Constraints A de BBN WMAP QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. dn m m BAU-DM LargeHadron HadronCollider Collider Large Lee et al EDM constraints & SUSY CPV One-loop de & slepton mass BBN Heavier sleptons: weaker one-loop EDM constraints & less resonant baryogenesis EDM constraints & SUSY CPV One-loop vs. Two-loop EDMs e˜ 0 e˜ e EDM constraints & SUSY CPV Neutralino-driven baryogenesis Baryogenesis LEP II Exclusion Two loop de SUGRA: M2 ~ 2M1 AMSB: M1 ~ 3M2 Relic Abundance of SUSY DM T << TEW : mixing ~ ~ ~0 of H,W to ~, Neutralino Mass Matrix M1 MN = 0 0 -mZ cos sin qW mZ cos cos qW M2 mZ sin sin qW -mZ sin sin qW -mZ cos sin qW mZ cos cos qW 0 -m mZ sin sin qW -mZ sin sin qW -m 0 N11B 0N12W 0N13Hd0N14Hu0 BINO ˜ 10 t t˜ ˜ 10 + res t WINO HIGGSINO ~10 ~ 0 , ~ i ~10 W,Z + coannihilation j W,Z Dark Matter: Relic Abundance ˜10 t˜ Neutralino-driven baryogenesis t suppressed ˜10 t ~10 LEP II Exclusion W,Z ~i0 , ~ j ~ 0 1 too fast Non-thermal 0 W,Z SUGRA: M2 ~ 2M1 AMSB: M1 ~ 3M2 Dark Matter: Neutrinos in the Sun ˜0 Z0 ˜0 Neutralino-driven baryogenesis SUGRA: M2 ~ 2M1 AMSB: M1 ~ 3M2 Dark Matter: Future Experiments Summary & Outlook • EWB remains a viable option for explaining the cosmic baryon asymmetry that can be tested and constrained using EDMs, precision electroweak, and collider input • New developments using non-equilibrium QFT are putting YB computations on a more systematic footing that will allow for detailed confrontations with lab experiments • Considerable (hard) work remains to be completed Complete set of transport coefficients, refined studies of bubble dynamics, applications to various scenarios for new CP-violation, phenomenology (EDM, Dark Matter, B physics, precision electroweak, collider) • Exciting field involving an interplay between cosmology and particle/nuclear physics in both theory and experiment