CP Violation and the Origin of Matter:

Download Report

Transcript CP Violation and the Origin of Matter:

CP Violation and the Origin of Matter:
What can the linear collider teach us?
M.J. Ramsey-Musolf
V. Cirigliano
C. Lee
S. Tulin
S. Profumo
PRD 71: 075010 (2005)
PRD 73: 115009 (2006)
JHEP 0607: 002 (2006)
LANL
INT
Caltech
Caltech
The Origin of Matter & Energy
Electroweak symmetry
breaking: Higgs ?
Baryogenesis: When?
SUSY? Neutrinos? CPV?
WIMPy D.M.: Related
to baryogenesis?
“New gravity”? Grav
baryogenesis ?
?
Weak scale
baryogenesis can be
Beyond
the SM
tested
experimentally
SM symmetry (broken)
Cosmic Energy Budget
What is the origin of baryonic matter ?
Cosmic Energy Budget
E
d  dS
Dark Matter


Baryons
 EDM
B (7.3 2.5) 1011
YB  
s (9.2 1.1) 1011
BBN
WMAP
Dark Energy

dS E

h
T-odd , CP-odd
by CPT theorem
What
Searches
What are
complementary
the
for permanent
quantitative
information
electric
implications
dipole
is needed
of new
moments
EDM
from collider
experiments
(EDMs)
studies,
of
forthe
precision
explaining
neutron,
electroweak
the
electron,
origin of
and
the
measurements,
baryonic
neutral atoms
component
and
probe
darkof
new
matter
theCP-violation
Universe
searches
? ?

EDM Probes of New CP Violation
CKM
f
dSM
dexp
dfuture
e
 1040
 1.6 1027
 1031
n
 1030
 6.3 1026
 1029
Hg
 1033
 2.11028
 1032

 1028
 1.11018
 1024
199
Also 225Ra, 129Xe, d
If new EWK CP violation is responsible for abundance
of matter, will these experiments see an EDM?
EW Baryogenesis: Standard Model
Weak Scale Baryogenesis
Anomalous Processes
• B violation
• C & CP violation
J B
• Nonequilibrium
dynamics
qL

W

Sakharov, 1967

Kuzmin, Rubakov, Shaposhnikov
McLerran,…
A

W
Different vacua: D(B+L)= DNCS

Sphaleron Transitions
EW Baryogenesis: Standard Model
Shaposhnikov
2
J  s12 s13 s23 c12 c13
c 23 sin 13
 (2.88  0.33) 105
Weak Scale Baryogenesis
mt4 mb4 mc2 ms2
13

3
10
MW4 MW4 MW2 MW2
• B violation
• C & CP violation
• Nonequilibrium
dynamics


F
F
1st order
2nd order
Sakharov, 1967



• CP-violation too weak
• EW PT too weak
Increasing mh



Baryogenesis: New Electroweak Physics
J B
qL

Weak Scale Baryogenesis
• B violation
Unbroken phase
Topological transitions

• C & CP violation
• Nonequilibrium
dynamics
W

W
(x)

new
Broken phase
1st order phase transition


Sakharov, 1967
Theoretical
Issues:
Transport at phase boundary (non-eq QFT)
new
Is it viable?
Bubble •dynamics
(numerical)
Strength• Can
of phase
transition
(beyondit?MSSM)
experiment
constrain
 
EDMs: many-body
physics
& QCD
• How reliably
can we
compute it?
e

CP Violation
new

new

New Developments
Quantum Transport Dynamics:
Application of non-equilibrium QFT
techniques: systematic analysis,
detailed parameter dependence,
theoretical uncertainties
Riotto, Carena et al, Lee et al, Konstandin et al
Coupling with Dark Matter
Carena et al, Profumo et al, Konstandin et al…
Electroweak Symmetry Breaking
Extended Higgs sector models
Barger et al, Carena et al, Konstandin et al…
Systematic Baryogenesis
Unbroken phase
(x)
Topological transitions
“snow”
Broken phase
1st order phase transition
Cohen, Kaplan,
Nelson
Joyce, Prokopec,
Turok
nL produced in wall
& diffuses in front
B
 D 2 B  W S FW S (x)nL (x)  RB 
t
FWS (x) !0 deep inside bubble
J B
qL

W

W
Systematic Baryogenesis
Unbroken phase
(x)
Topological transitions
Compute from first
principles given Lnew
Broken phase

1st order phase transition
ni
˜
 D 2 ni  Sn j ,T,, M
t
Quantum Transport Equation
Riotto
Carena et al
Lee, Cirigliano,
Tulin, R-M
Konstandin et al
G˜ 0


G˜


=
˜

G˜ 0

G˜ 0
+
+
+…
Schwinger-Dyson Equations
Systematic Baryogenesis
Departure from equilibrium
• Non-adiabatic evolution of states
& degeneracies
G˜
G˜ 0



=
˜

G˜ 0

G˜ 0
+
+
…
+

Generalized Green’s Functions: Closed Time Path
• Non-thermal distributions
Exploit scale hierarchy: expand in scale ratios e
Quantum Transport Equations

X 
 j

G˜ 
(X)
= d
3

+0 
˜ 0X 0
G
z dz

˜

˜ 0
G
(X,z) G (z,X)  G (X,z)  (z,X)  + …
˜ 0
G

Approximations



• neglect O(e3) terms
+

Expand
in ed,p,
Chiral
From
S-D Equations:
Producing
nL = 0
Relaxation
CPV
•• S
SCPV
Riotto, Carena et
al, Lee et al
Strong
sphalerons
•• M
, H ,, YY , SS
M, H
Lee et al
Currents
Numerical work:
CP violating
• SS sources
Links CP violation in Higgs
and baryon sectors
Phenomenology: MSSM (Illustrative)
Baryon Number
YB 


B
s
 F1 sin    F2 sin(     A )
S CPV
W S
H˜
F1 
 diff
StCPV
W S
˜
F2 
 diff
Higgsinos
Squarks
 HiggsinoMSSM EWB:
Gaugino driven
Resonant CPV & Relaxation
Sˆ H˜
CP violation
R


 (GeV)
M W˜

Relaxation
M W˜
Huet &
Nelson
 (GeV)
S CPV
W S
H˜
F1 
 diff
Resonant CPV & Relaxation
F1 YBW MAP
F2 YBW MAP
Mt˜R

M W˜
1st order EWPT:
light stop
 (GeV)
YB 
B
s
MSSM EWB:
Higgsino-Gaugino
driven

 F1 sin    F2 sin(     A )

Precision
electroweak
mt˜L (GeV)

F2 F1 ~ 103
Baryon Number & Y
YB 
B
s
 F1 sin    F2 sin(     A )
our Y
previous Y


tR
H
Cirigliano, Lee, R-M, Tulin
tL
tL
g
Joyce, Prokopec, Turok
EDM constraints & SUSY CPV
One-loop vs. Two-loop EDMs
e˜


0
e˜
e


EDM constraints & SUSY CPV
DM Considerations
Neutralino-driven
baryogenesis
Baryogenesis
LEP II Exclusion
| sin  | > 0.02
| de , dn | > 10-28 e-cm
M < 1 TeV
Two loop de
SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2
Dark Matter Considerations: MSSM
new
Chargino Mass Matrix
MC =
T ~TEW : scattering
 ~ ~ 
of H,W from
background field
m W 2 cos b
M2
mW 2 sin b

T << TEW : mixing
~ ~
~0
of H,W to ~,
Neutralino Mass Matrix
M1
MN =
0
(x)
0
-mZ cos bsin qW
mZ cos bcos qW
M2
mZ sin bsin qW
-mZ sin bsin qW
-mZ cos bsin qW
mZ cos bcos qW
0
-
mZ sin bsin qW
-mZ sin bsin qW
-
0
Dark Matter: Relic Abundance
˜ 10

t˜
suppressed
˜ 10


Neutralino-driven
baryogenesis
t
t




~10
LEP II Exclusion
W,Z
~i0 , ~ j
~ 0
1
too fast
Non-thermal 0
W,Z
SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2
Cirigliano,
Profumo, R-M
Dark Matter: Future Experiments
Assumes
W ~WCDM
Cirigliano,
Profumo, R-M
YB, EDMs, Dark Matter & Colliders
Light Stop
Extending the Higgs Sector
+L
soft
Implications
• Strong 1st order EWPT w/o light stop
• New sources of CPV & relaxation
• Light singlet Higgs
• Singlino CDM….
Conclusions
• Explaining the origin of matter remains an important
task at the interface of particle physics, nuclear
(hadronic) physics, and cosmology
• CP-violation beyond that of the SM is needed to provide
such an explanation
• Recent theoretical developments in baryogenesis are
putting baryon asymmetry computations on firmer
ground
• New EDM and dark matter searches -- together with
precision electroweak and collider studies
(especially the ILC) -- will provide
complementary and essential tests of matter
production at the electroweak scale