Electroweak Baryogenesis and Electric Dipole Moments

Download Report

Transcript Electroweak Baryogenesis and Electric Dipole Moments

Electroweak Baryogenesis
and Electric Dipole Moments
M.J. Ramsey-Musolf
V. Cirigliano
C. Lee
S. Tulin
Caltech
INT
Caltech
PRD 71: 075010 (2005)
What is the origin of matter ?
Cosmic Energy Budget
Rotation curves &
lensing
Cosmic acceleration
Stars, planets,
Human life
What are the quantitative implications of EDM
measurements for explaining the origin of the
baryonic component of the universe?
Baryogenesis and EDMs: Theoretical Tasks
• Attaining reliable computations that relate particle
physics models of new CP-violation to EDMs of
complex systems (neutron, atoms, nuclei)
Nonperturbative QCD, atomic & nuclear structure
• Attaining reliable computations of the baryon asymmetry
from fundamental particle physics theories with
new CP-violation
• Non-equilibrium quantum transport
• Non-zero T and m
• Spacetime dynamics of cosmic phase transitions
Equally difficult but less studied
This talk
& C. Lee
Outline
• General considerations
• Theoretical problems and progress
• Some phenomenology
• Open issues
Baryon Asymmetry of the Universe (BAU)
b
 0.024  0.001
(7.3  2.5) 1011
YB 
 
s
(9.2  1.1) 1011
B
BBN
WMAP
Baryogenesis: Ingredients
Present universe
Early universe
Sakharov Criteria
• B violation
• C & CP violation
 Y1

• Nonequilibrium
dynamics
Sakharov, 1967
 1
L

 1
S

log10 (m / m0 )
Weak scale
Planck scale
Baryogenesis: Ingredients
Hˆ , Cˆ  0 , Hˆ , Cˆ Pˆ  0
Sakharov Criteria
  
ˆ Hˆ ,t Bˆ  0
Tr 
• B violation
• C & CP violation


• Nonequilibrium
dynamics
Sakharov, 1967


Hˆ , Cˆ Pˆ Tˆ  0


Tr e

  Hˆ

Bˆ  0
Baryogenesis: Ingredients
Present universe
Early universe
Sakharov Criteria
• B violation
• C & CP violation
 Y1

• Nonequilibrium
dynamics
Sakharov, 1967
 1
L


Weak scale
baryogenesis can be
tested experimentally
 1
S
?
?
log10 (m / m0 )
Weak scale
Planck scale
Leptogenesis
Early universe
Key Ingredients
Present universe
• Heavy nR
 Y1
• mnspectrum
• CP violation
Leptogenesis

• L violation
-decay, 0ndecay, q13
 1
S

Weak scale
log10 (m / m0 )
Planck scale
EW Baryogenesis: Standard Model
Weak Scale Baryogenesis
Anomalous Processes
• B violation
• C & CP violation
• Nonequilibrium
dynamics
A
Sakharov, 1967
Different vacua: D(B+L)= DNCS

Kuzmin, Rubakov, Shaposhnikov
McLerran,…
EW Baryogenesis: Standard Model
Shaposhnikov
2
J  s12 s13 s23 c12 c13
c 23 sin13
 (2.88 0.33) 105
Weak Scale Baryogenesis
mt4 mb4 mc2 ms2
13

3
10
MW4 MW4 MW2 MW2
• B violation
• C & CP violation
• Nonequilibrium
dynamics


Sakharov, 1967
F
F
1st order

2nd order


• CP-violation too weak
• EW PT too weak
Increasing mh



Baryogenesis: New Electroweak Physics
Weak Scale Baryogenesis
• B violation
Unbroken phase
Topological transitions
new
• C & CP violation
• Nonequilibrium
dynamics
(x)
Broken phase

1st order phase 
transition
CP Violation
Sakharov, 1967
new
• Is it viable?
• Can experiment constrain it?
• How reliably can we compute it?

new


new
e


EDM Probes of New CP Violation
CKM
f
e
n
199
Hg
m
dSM
dexp
dfuture
 1040
 1030
 1.6 1027
 6.3 1026
 1031
 1029
 1033
 1028
 2.11028
 1.11018
 1032
 1024
If new EWK CP violation is responsible for abundance
of matter, will these experiments see an EDM?
Present n-EDM limit
Proposed n-EDM limit
?
Matter-Antimatter
Asymmetry in
the Universe
Better theory
M. Pendlebury
B. Filippone
“n-EDM has killed more theories than any other single experiment”
Baryogenesis and EDMs: Better Theory ?
Non-equilibrium quantum transport
RHIC
Violent departure
from equilibrium
Electroweak Baryogenesis
new
(x)
“Gentle” departure from
equilibrium
Systematic treatment of
transport dynamics w/
controlled approximations
Systematic Baryogenesis
Goal: Derive dependence of YB on parameters
Lnew systematically (controlled approximations)
Parameters in Lnew
CPV phases
Bubble & PT
dynamics
Departure from equilibrium
• Earliest work: QM scattering & stat mech
• New developments: non-equilibrium QFT
Systematic Baryogenesis: MSSM
F
F
1st order

2nd order
LEP EWWG


Increasing mh



1st order PT in MSSM:
mh < 120 GeV
mh>114.4 GeV
Constraint on mh relaxed for
larger gauge/Higgs sector
(NMSSM, etc.)
See, e.g., Kang
et al for U(1)’
Systematic Baryogenesis
Unbroken phase
(x)
Topological transitions
“snow”
Broken phase
1st order phase transition
Cohen, Kaplan,
Nelson
Joyce, Prokopec,
Turok
nL produced in wall
& diffuses in front
B
 D 2B  WS FWS (x)nL (x)  RB 
t
FWS (x) !0 deep inside bubble
Systematic Baryogenesis
Riotto
Carena et al
Lee, Cirigliano,
Tulin, R-M
Unbroken phase
(x)
Topological transitions
Compute from first
principles given Lnew
Broken phase

1st order phase transition
ni
˜
 D 2ni  Sn j ,T,, M
t
Quantum Transport Equation



G˜
G˜ 0

=
˜

G˜ 0

G˜ 0
+
+
+…
Schwinger-Dyson Equations
Systematic Baryogenesis
Departure from equilibrium
• Non-adiabatic evolution of states
& degeneracies
G˜



G˜ 0

=
˜

G˜ 0

G˜ 0
+
+
+…
Generalized Green’s Functions: Closed Time Path
• Non-thermal distributions
Exploit scale hierarchy: expand in scale ratios e
Scale Hierarchy
T > 0: Degeneracies
g
q
q
Time Scales
M(T)
P(T)
tP ~ 1/P


Plasma time:
vW > 0: Non-adiabaticity

t˜L
vW
Decoherence time:
td ~ 1/vW k)
e.g., particle in an
expanding box
Scale Hierarchy
Time scales:
tint ~ 1/w
P ~3Cf T/ 8
k / w1
tP ~ 1/P
td ~ 1/(vwk)
w2~m2 +2pCf T2 + k2
vw ~ 0.1
ep = tint / tP ~ P / w
<< 1
ed = tint / td ~ vwk / w
<< 1
Energy scales:
em  m/T
<< 1
Quantum Transport Equations
G˜

=

G˜ 0

+

G˜ 0

˜

G˜ 0
+
+…
Expand
in ed,p,m
Chiral
From S-D Equations:
Relaxation
• SCPV
Riotto, Carena et
al, Lee et al
Strong
• M , H , Y
sphalerons
Lee et al
Currents
Numerical work:
CP violating
• SS sources
Links CP violation in Higgs
and baryon sectors
SUSY CPV: mSUGRA
Near degeneracies
resonances
BBN
WMAP
de
A
de
199Hg
A
199Hg
BAU
BAU


m
m
Lee et al
Different choices for SUSY parameters


SUSY CPV: mSUGRA
Future: EDMs & LHC
A
de
BBN
WMAP
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
dn
m

m
LargeHadron
HadronCollider
Collider
Large

Lee et al
Summary & Outlook
• EWB remains a viable option for explaining the cosmic
baryon asymmetry that can be tested and constrained
using EDMs, precision electroweak, and collider input
• New developments using non-equilibrium QFT are putting
YB computations on a more systematic footing that will
allow for detailed confrontations with lab experiments
• Considerable (hard) work remains to be completed
Complete set of transport coefficients, refined studies of bubble
dynamics, applications to various scenarios for new CP-violation,
phenomenology (EDM, B physics, precision electroweak, collider)
• Exciting field involving an interplay between cosmology and
particle/nuclear physics in both theory and experiment
Scale Hierarchy
L DL
L
 (x)  An sin kn x
0
n

np
kn 
L
 n
0
n
k = kEFF(,Lw)
2
n=1
n=2

n=3
L  DL
L