Electric Dipole Moments and the Origin of Baryonic Matter

Download Report

Transcript Electric Dipole Moments and the Origin of Baryonic Matter

SUSY Baryogenesis, EDMs, & Dark
Matter: A Systematic Approach
M.J. Ramsey-Musolf
V. Cirigliano
C. Lee
S. Tulin
S. Profumo
Caltech
INT
Caltech
Caltech
PRD 71: 075010 (2005),
hep-ph/0603058 (PRD),
hep-ph/0603246 (JHEP)
The Origin of Matter & Energy
Electroweak symmetry
breaking: Higgs ?
Baryogenesis: When?
SUSY? Neutrinos? CPV?
WIMPy D.M.: Related
to baryogenesis?
“New gravity”? Grav
baryogenesis ?
?
Weak scale
baryogenesis can be
Beyond
the SM
tested
experimentally
SM symmetry (broken)
Cosmic Energy Budget
What is the origin of baryonic matter ?
Cosmic Energy Budget
E
d  dS
Dark Matter


Baryons
 EDM
B (7.3 2.5) 1011
YB  
s (9.2 1.1) 1011
BBN
WMAP
Dark Energy

dS E

h
T-odd , CP-odd
by CPT theorem
What are the
Searches
for permanent
quantitativeelectric
implications
dipoleof new
moments
EDM
experiments
(EDMs) of
forthe
explaining
neutron,the
electron,
origin of
andbaryonic
the
neutral atoms
component
probe of
new
theCP-violation
Universe ?

EDM Probes of New CP Violation
See Pospelov, Plaster
CKM
f
e
n
199
Hg

dSM
dexp
dfuture
 1040
 1030
 1.6 1027
 6.3 1026
 1031
 1029
 1033
 1028
 2.11028
 1.11018
 1032
 1024
Also 225Ra, 129Xe, d
If new EWK CP violation is responsible for abundance
of matter, will these experiments see an EDM?
Baryogenesis and EDMs: Theoretical Tasks
• Attaining reliable computations that relate particle
physics models of new CP-violation to EDMs of
complex systems (neutron, atoms, nuclei)
Nonperturbative QCD, atomic & nuclear structure
• Attaining reliable (systematic) computations of the
baryon asymmetry from fundamental particle
physics theories with new CP-violation
• Non-equilibrium quantum transport
• Non-zero T and 
• Spacetime dynamics of cosmic phase transitions
Equally difficult but less studied
This talk
series
Baryogenesis: New Electroweak Physics
JB
qL

Weak Scale Baryogenesis
• B violation
Unbroken phase
Topological transitions

• C & CP violation
• Nonequilibrium
dynamics
W

W
(x)

new
Broken phase
1st order phase 
transition

Sakharov, 1967
Theoretical
Issues:
Transport at phase boundary (non-eq QFT)
new
Is it viable?
Bubble •dynamics
(numerical)
Strength• Can
of phase
transition
(beyondit?MSSM)
experiment
constrain
 
EDMs: many-body
physics
& QCD
• How reliably
can we
compute it?
e

CP Violation
new

new

Systematic Baryogenesis
Unbroken phase
(x)
Topological transitions
“snow”
Broken phase
1st order phase transition
Cohen, Kaplan,
Nelson
Joyce, Prokopec,
Turok
nL produced in wall
& diffuses in front
B
 D 2B  WS FWS (x)nL (x)  RB 
t
FWS (x) !0 deep inside bubble
JB
qL

W

W
Systematic Baryogenesis
Unbroken phase
(x)
Topological transitions
Compute from first
principles given Lnew
Broken phase

1st order phase transition
ni
˜
 D 2ni  Sn j ,T,, M
t
Quantum Transport Equation
Riotto
Carena et al
Lee, Cirigliano,
Tulin, R-M
Konstandin et al



G˜
G˜ 0

=
˜

G˜ 0

G˜ 0
+
+
+…
Schwinger-Dyson Equations
Systematic Baryogenesis
Departure from equilibrium
• Non-adiabatic evolution of states
& degeneracies
G˜



G˜ 0

=
˜

G˜ 0

G˜ 0
+
+
+…
Generalized Green’s Functions: Closed Time Path
• Non-thermal distributions
Exploit scale hierarchy: expand in scale ratios e
Scale Hierarchy
T > 0: Degeneracies
g
q
q
Time Scales
M(T)
P(T)
tP ~ 1/P


Plasma time:
vW > 0: Non-adiabaticity

t˜L
vW
Decoherence time:
td ~ 1/vW k)
e.g., particle in an
expanding box
Scale Hierarchy
Time scales:
tint ~ 1/w
P ~3Cf aT/ 8
k / w1
tP ~ 1/P
td ~ 1/(vwk)
w2~m2 +2paCf T2 + k2
vw ~ 0.1
ep = tint / tP ~ P / w
<< 1
ed = tint / td ~ vwk / w
<< 1
Energy scales:
e  /T
<< 1
Quantum Transport Equations

X 
 j

G˜ 
(X)
= d
3

+0 
˜ 0X 0
G
z dz

˜

0
(X,z) GG˜(z,X)  G (X,z)  (z,X) 
˜ 0
G




Approximations
• neglect O(e3) terms
+

+…
Expand
in ed,p,
Chiral
From
S-D Equations:
Producing
nL = 0
Relaxation
CPV
•• S
SCPV
Riotto, Carena et
al, Lee et al
Strong
sphalerons
•• M
, H ,, YY , SS
M, H
Lee et al
Currents
Numerical work:
CP violating
• SS sources
Links CP violation in Higgs
and baryon sectors
Some Results: Preview
Baryon Number (Illustrative, MSSM)
YB 


B
s
 F1 sin    F2 sin(    A )
SCPV
WS
H˜
F1 
 diff
StCPV
WS
˜
F2 
 diff
Higgsinos
Squarks
 HiggsinoMSSM EWB:
Gaugino driven
Resonant CPV & Relaxation
Sˆ H˜
CP violation
R


 (GeV)
MW˜

Relaxation
MW˜
Huet &
Nelson
 (GeV)
SCPV
WS
H˜
F1 
 diff
See C. Lee talk
Baryon Number & Y
See S. Tulin talk
YB 
B
s
 F1 sin    F2 sin(    A )
our Y
previous Y


tR
H
Cirigliano, Lee, R-M, Tulin
tL
tL
g
Joyce, Prokopec, Turok
EDM constraints & SUSY CPV
See C. Lee talk
See S. Profumo talk
One-loop vs. Two-loop EDMs
e˜


0
e˜

e


EDM constraints & SUSY CPV
DM Considerations
Neutralino-driven
baryogenesis
Baryogenesis
LEP II Exclusion
| sin  | > 0.02
| de , dn | > 10-28 e-cm
M < 1 TeV
Two loop de
SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2
See Profumo
talk
Conclusions
• New EDM experiments can test -- and possibly
rule out -- EWB as a paradigm for
explaining the BAU provided sufficiently
reliable computations of YB can be performed
• Progress is being made in obtaining systematic
computations of YB by computing all relevant
transport coefficients in a consistent
framework
• There exists a rich phenomenology involving
cosmology, EDMs, LHC, ILC in SUSY and
beyond as well as additional formal work to
be undertaken