Transcript Maui 05

Nuclei & the Early Universe:
Looking Beyond the Standard Model
M.J. Ramsey-Musolf
DNP Mini-Symposium: Maui ‘05
Sessions BB: M 7-10:30pm
JB: Th 9am - 12pm
KB: Th 2-5pm
Fundamental Symmetries & Cosmic History
• What were the fundamental symmetries
that governed the microphysics of
the early universe?
• What insights can precision electroweak
studies in nuclear physics provide?
Fundamental Symmetries & Cosmic History
Standard Model puzzles
Standard Model successes
Fundamental Symmetries & Cosmic History
Early universe
Present universe
Standard Model
4
2
gi
High energy desert
Weak scale
log10 ( / 0 )
Planck scale
Fundamental Symmetries & Cosmic History
Early universe
Present universe
Standard Model
4  for
A “near miss”
2
grand unification
g
Gravity
i
High energy desert
Weak scale
log10 ( / 0 )
Planck scale
Fundamental Symmetries & Cosmic History
Early universe
Present universe
Standard Model
4
Weak scale
2
gi
unstable:
Why is GF
so large?
Weak scale
Unification
Neutrino
mass Origin of
matter
High energy desert
log10 ( / 0 )
Planck scale
Fundamental Symmetries & Cosmic History
Cosmic Energy Budget
Rotation curves &
lensing
Cosmic acceleration
Stars, planets,
Human life
What is the origin of matter ?
Fundamental Symmetries & Cosmic History
Anthropic Relevance Budget
Dark Matter
Stars, planets,
Human life
Dark Energy
Baryons
What is the origin of matter ?
Fundamental Symmetries & Cosmic History
Cosmic Energy Budget
Rotation curves &
lensing
Cosmic acceleration
11
BBN
 (7.3 2.5) 10
Y  
11
WMAP
s (9.2
1.1)
10
the origin of matter ?
Stars, planets,
Human life B
B
What
 is
SM: 1st order PT and CPV effects too weak
There must have been additional
symmetries in the earlier Universe to
• Unify all matter, space, & time
• Stabilize the weak scale
• Produce all the matter that exists
• Account for neutrino properties
• Give self-consistent quantum gravity
Supersymmetry, GUT’s, extra dimensions…
What are the new fundamental
symmetries?
Two frontiers in the search
Collider experiments
Indirect searches at
(pp, e+e-, etc) at higher
lower energies (E < MZ)
energies (E >> MZ)
but high precision
Large Hadron Collider
Ultra cold neutrons
CERN
High energy
physics
LANSCE, NIST, SNS
Particle, nuclear
& atomic physics
What are the new fundamental symmetries?
•
Why is there more matter than antimatter
in the present universe?
Electric dipole moment searches
•
What are the unseen forces that
disappeared from view as the universe
cooled?
Precision electroweak: weak decays, scattering, LFV
•
What are the masses of neutrinos and
how have they shaped the evolution of the
universe?
Neutrino oscillations, 0nbb-decay, q13 , …
Tribble report
EDMs and Baryogenesis
Present universe
Early universe
Weak Scale Baryogenesis
• B violation
• C & CP violation
 Y1

• Nonequilibrium
dynamics
Sakharov, 1967
 1
L

 1
S

log10 ( / 0 )
Weak scale
Planck scale
Baryogenesis: New Electroweak Physics
Cohen, Kaplan, Nelson
Weak Scale Baryogenesis
• B violation
Unbroken phase
Topological transitions
new
• C & CP violation
• Nonequilibrium
dynamics
(x)
Broken phase

1st order phase 
transition
CP Violation
Sakharov, 1967
new
• Is it viable?
• Can experiment constrain it?
• How reliably can we compute it?

new


new
e


EDM Probes of New CP Violation
CKM
f
e
n
199
Hg

dSM
dexp
dfuture
 1040
 1030
 1.6 1027
 6.3 1026
 1031
 1029
 1033
 1028
 2.11028
 1.11018
 1032
 1024
If new EWK CP violation is responsible for abundance
of matter, will these experiments see an EDM?
Present n-EDM limit
Proposed n-EDM limit
?
Matter-Antimatter
Asymmetry in
the Universe
Better theory
M. Pendlebury
B. Filippone
Riotto; Carena et al.;
Lee, Cirigliano, R-M
“n-EDM has killed more theories than any other single experiment”
EDM constraints & SUSY CPV
Future: EDMs & LHC
de
A
BBN
WMAP
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
dn
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
new
new





new
(x)
LargeHadron
HadronCollider
Collider
Large
 Non-equilibrium QFT

new
e



Lee,
Cirigliano, R-M
Leptogenesis
Early universe
Key Ingredients
Present universe
• Heavy nR
 Y1
• mnspectrum
• CP violation
Leptogenesis

• L violation
b-decay, 0nbbdecay, q13
 1
S

Weak scale
log10 ( / 0 )
Planck scale
Weak decays
Vud

u c t Vcd

Vtd
d  u e ne
s  u e ne
b  u e ne

2
2
Vud  Vus  Vub
2
=
Vus Vub d
 
Vcs Vcb s 
 
Vts Vtb b
1
SM
0.9968 0.0014
Expt
0.94870.0010 0.04820.0008 0.000010.000007
Weak decays & new physics
Flavor-blind
SUSYVud
d
Vus V
ub
 breaking
 
u c t Vcd Vcs Vcb s 

 
Vtd Vts Vtb b
d  u e ne
s  u e ne
b  u e ne
n



˜

0

n


n p e ne

˜



SUSY
e
n
A(Z,N)  A(Z 1,N
1) e  n e

˜
n

0  n˜

   
e n e
˜0

GFb
 Vud 1 rb  r 

GF
e


O
 ~ 0.001
 OSM
W
b-decay
˜
n

ne
CKM, (g-2),
MW, Mt ,…
e
˜




e
SUSY

M˜ L  Mq˜ L
Kurylov, R-M
New physics
Weak decays
b
F

F
G
 Vud 1 rb  r 
G
b-decay
n  p e ne
A(Z,N)  A(Z 1,N 1) e  n e
    0 e n e
0+ ! 0+ “Superallowed”


Ft  ft1 R  NS 1 C 
b 2
F
 K 2(G )
Nuclear structuredependent corrections
See J. Hardy, Thurs 2pm
b-decay
Weak decays
b
F

F
G
 Vud 1 rb  r 
G
Ultra cold neutrons
58Ni
coated stainless guide
n  p e ne
A(Z,N)  A(Z 1,N 1) e  n e
    0 e n e
Lifetime & correlations
Flapper valve
Liquid N2
pe  pn
pe
dW 1  a
 An  
E e En
Ee
Be reflector
LHe
Solid D2
77 K poly

UCN Detector
Tungsten Target
LANSCE: UCN “A”
NIST: tn
Future SNS: tn,
a,b,A,… Future LANSCE:
Weak decays
b
F

F
G
 Vud 1 rb  r 
G
b-decay
n  p e ne
A(Z,N)  A(Z 1,N 1) e  n e
    0 e n e
PSI: “Pi-Beta”

   e n e     n  ~110

0 


8
b-decay
Weak decays
b
F

F
G
 Vud 1 rb  r 
G
n  p e ne
A(Z,N)  A(Z 1,N 1) e  n e
    0 e n e
SM theory input
ne
p

W

e
n
MW

ˆ  M Z2 
GF 

ln 2  CW ()
2 2    

Weak decays
Vud

u c t Vcd

Vtd
d  u e ne
s  u e ne
b  u e ne

kaon decay

0 
K   e n e

Value of Vus important
Vus Vub d
 
Vcs Vcb s 
 
Vts Vtb b
GFK
 Vus 1 rK  r 

GF

New physics:
too period
small
Details:
question
UCNA
CKM Summary: PDG04
CKM Summary: New Vus & tn ?
New tn !!
Vus & Vud
theory ?
UCNA
New 0+
info
Muon Decay: Michel Parameters
3/4
0
3/4
1
Muon Decay: Michel Parameters
Model Independent
Analysis
0
0
H
H
n

H
0

H0
Z,W
n

Prezeau, Kurylov 05



2005 Global fit: Gagliardi et al.
n
n

Erwin, Kile, Peng, R-M (in prog)


constrained by mn
mn
MPs
Model Dependent Analysis
n
W

1,2
P
ne
TWIST P




TWIST 

e


First row CKM
P



MWR (GeV)
Lepton Scattering & New Symmetries
Parity-Violating electron scattering
e



e
Z

0
e , p
e

e , p
e , p
e

e , p

2
GF Q 
2
A 
QW  F(Q ,q )

4 2

LR
“Weak Charge” ~ 1 - 4 sin2 qW ~ 0.1
Weak Mixing Angle: Scale Dependence
Czarnecki, Marciano
Erler, Kurylov, R-M
DIS-Parity, JLab
Atomic PV
nN deep inelastic
Linear
Collider e-e-
sin2qW
e+e- LEP, SLD
SLAC E158 (ee)
JLab Q-Weak (ep)
Moller, JLab
(GeV)
Comparing Qwe and QWp
Kurylov, R-M, Su
SUSY loops
 SUSY
dark matter
E158 &QWeak
QWp,SUSYQuickTime™
QWp,SM and a TIFF (Uncompressed) decompressor are needed to see this picture.
Linear
collider
JLab Moller
RPV 95% CL
QWe,SUSY QWe, SM
Comparing Qwe and QWp
“DIS Parity”
Kurylov, R-M, Su
SUSY loops
 SUSY
dark matter
E158 &QWeak
QWp,SUSYQuickTime™
QWp,SM and a TIFF (Uncompressed) decompressor are needed to see this picture.
Linear
collider
JLab Moller
RPV 95% CL
QWe,SUSY QWe, SM
Conclusions
• Precision tests of fundamental symmetries and
studies of neutrino properties -- together with
careful theoretical analysis -- are providing a
powerful probe of the fundamental symmetries
of the early universe
• The information obtained from these studies
complements what we learn from high energy
collider experiments
• We can look forward to an interesting minisymposium
Ke3 decays: current status
O(p6)
Vus  f
K 0 

(0)
G. Isidori, CKM 2005
Ke3 decays: current status
Quenched
LQCD
Vus
Large NC
G. Isidori, CKM 2005
O(p6)