Transcript Maui 05
Nuclei & the Early Universe: Looking Beyond the Standard Model M.J. Ramsey-Musolf DNP Mini-Symposium: Maui ‘05 Sessions BB: M 7-10:30pm JB: Th 9am - 12pm KB: Th 2-5pm Fundamental Symmetries & Cosmic History • What were the fundamental symmetries that governed the microphysics of the early universe? • What insights can precision electroweak studies in nuclear physics provide? Fundamental Symmetries & Cosmic History Standard Model puzzles Standard Model successes Fundamental Symmetries & Cosmic History Early universe Present universe Standard Model 4 2 gi High energy desert Weak scale log10 ( / 0 ) Planck scale Fundamental Symmetries & Cosmic History Early universe Present universe Standard Model 4 for A “near miss” 2 grand unification g Gravity i High energy desert Weak scale log10 ( / 0 ) Planck scale Fundamental Symmetries & Cosmic History Early universe Present universe Standard Model 4 Weak scale 2 gi unstable: Why is GF so large? Weak scale Unification Neutrino mass Origin of matter High energy desert log10 ( / 0 ) Planck scale Fundamental Symmetries & Cosmic History Cosmic Energy Budget Rotation curves & lensing Cosmic acceleration Stars, planets, Human life What is the origin of matter ? Fundamental Symmetries & Cosmic History Anthropic Relevance Budget Dark Matter Stars, planets, Human life Dark Energy Baryons What is the origin of matter ? Fundamental Symmetries & Cosmic History Cosmic Energy Budget Rotation curves & lensing Cosmic acceleration 11 BBN (7.3 2.5) 10 Y 11 WMAP s (9.2 1.1) 10 the origin of matter ? Stars, planets, Human life B B What is SM: 1st order PT and CPV effects too weak There must have been additional symmetries in the earlier Universe to • Unify all matter, space, & time • Stabilize the weak scale • Produce all the matter that exists • Account for neutrino properties • Give self-consistent quantum gravity Supersymmetry, GUT’s, extra dimensions… What are the new fundamental symmetries? Two frontiers in the search Collider experiments Indirect searches at (pp, e+e-, etc) at higher lower energies (E < MZ) energies (E >> MZ) but high precision Large Hadron Collider Ultra cold neutrons CERN High energy physics LANSCE, NIST, SNS Particle, nuclear & atomic physics What are the new fundamental symmetries? • Why is there more matter than antimatter in the present universe? Electric dipole moment searches • What are the unseen forces that disappeared from view as the universe cooled? Precision electroweak: weak decays, scattering, LFV • What are the masses of neutrinos and how have they shaped the evolution of the universe? Neutrino oscillations, 0nbb-decay, q13 , … Tribble report EDMs and Baryogenesis Present universe Early universe Weak Scale Baryogenesis • B violation • C & CP violation Y1 • Nonequilibrium dynamics Sakharov, 1967 1 L 1 S log10 ( / 0 ) Weak scale Planck scale Baryogenesis: New Electroweak Physics Cohen, Kaplan, Nelson Weak Scale Baryogenesis • B violation Unbroken phase Topological transitions new • C & CP violation • Nonequilibrium dynamics (x) Broken phase 1st order phase transition CP Violation Sakharov, 1967 new • Is it viable? • Can experiment constrain it? • How reliably can we compute it? new new e EDM Probes of New CP Violation CKM f e n 199 Hg dSM dexp dfuture 1040 1030 1.6 1027 6.3 1026 1031 1029 1033 1028 2.11028 1.11018 1032 1024 If new EWK CP violation is responsible for abundance of matter, will these experiments see an EDM? Present n-EDM limit Proposed n-EDM limit ? Matter-Antimatter Asymmetry in the Universe Better theory M. Pendlebury B. Filippone Riotto; Carena et al.; Lee, Cirigliano, R-M “n-EDM has killed more theories than any other single experiment” EDM constraints & SUSY CPV Future: EDMs & LHC de A BBN WMAP QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. dn QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. new new new (x) LargeHadron HadronCollider Collider Large Non-equilibrium QFT new e Lee, Cirigliano, R-M Leptogenesis Early universe Key Ingredients Present universe • Heavy nR Y1 • mnspectrum • CP violation Leptogenesis • L violation b-decay, 0nbbdecay, q13 1 S Weak scale log10 ( / 0 ) Planck scale Weak decays Vud u c t Vcd Vtd d u e ne s u e ne b u e ne 2 2 Vud Vus Vub 2 = Vus Vub d Vcs Vcb s Vts Vtb b 1 SM 0.9968 0.0014 Expt 0.94870.0010 0.04820.0008 0.000010.000007 Weak decays & new physics Flavor-blind SUSYVud d Vus V ub breaking u c t Vcd Vcs Vcb s Vtd Vts Vtb b d u e ne s u e ne b u e ne n ˜ 0 n n p e ne ˜ SUSY e n A(Z,N) A(Z 1,N 1) e n e ˜ n 0 n˜ e n e ˜0 GFb Vud 1 rb r GF e O ~ 0.001 OSM W b-decay ˜ n ne CKM, (g-2), MW, Mt ,… e ˜ e SUSY M˜ L Mq˜ L Kurylov, R-M New physics Weak decays b F F G Vud 1 rb r G b-decay n p e ne A(Z,N) A(Z 1,N 1) e n e 0 e n e 0+ ! 0+ “Superallowed” Ft ft1 R NS 1 C b 2 F K 2(G ) Nuclear structuredependent corrections See J. Hardy, Thurs 2pm b-decay Weak decays b F F G Vud 1 rb r G Ultra cold neutrons 58Ni coated stainless guide n p e ne A(Z,N) A(Z 1,N 1) e n e 0 e n e Lifetime & correlations Flapper valve Liquid N2 pe pn pe dW 1 a An E e En Ee Be reflector LHe Solid D2 77 K poly UCN Detector Tungsten Target LANSCE: UCN “A” NIST: tn Future SNS: tn, a,b,A,… Future LANSCE: Weak decays b F F G Vud 1 rb r G b-decay n p e ne A(Z,N) A(Z 1,N 1) e n e 0 e n e PSI: “Pi-Beta” e n e n ~110 0 8 b-decay Weak decays b F F G Vud 1 rb r G n p e ne A(Z,N) A(Z 1,N 1) e n e 0 e n e SM theory input ne p W e n MW ˆ M Z2 GF ln 2 CW () 2 2 Weak decays Vud u c t Vcd Vtd d u e ne s u e ne b u e ne kaon decay 0 K e n e Value of Vus important Vus Vub d Vcs Vcb s Vts Vtb b GFK Vus 1 rK r GF New physics: too period small Details: question UCNA CKM Summary: PDG04 CKM Summary: New Vus & tn ? New tn !! Vus & Vud theory ? UCNA New 0+ info Muon Decay: Michel Parameters 3/4 0 3/4 1 Muon Decay: Michel Parameters Model Independent Analysis 0 0 H H n H 0 H0 Z,W n Prezeau, Kurylov 05 2005 Global fit: Gagliardi et al. n n Erwin, Kile, Peng, R-M (in prog) constrained by mn mn MPs Model Dependent Analysis n W 1,2 P ne TWIST P TWIST e First row CKM P MWR (GeV) Lepton Scattering & New Symmetries Parity-Violating electron scattering e e Z 0 e , p e e , p e , p e e , p 2 GF Q 2 A QW F(Q ,q ) 4 2 LR “Weak Charge” ~ 1 - 4 sin2 qW ~ 0.1 Weak Mixing Angle: Scale Dependence Czarnecki, Marciano Erler, Kurylov, R-M DIS-Parity, JLab Atomic PV nN deep inelastic Linear Collider e-e- sin2qW e+e- LEP, SLD SLAC E158 (ee) JLab Q-Weak (ep) Moller, JLab (GeV) Comparing Qwe and QWp Kurylov, R-M, Su SUSY loops SUSY dark matter E158 &QWeak QWp,SUSYQuickTime™ QWp,SM and a TIFF (Uncompressed) decompressor are needed to see this picture. Linear collider JLab Moller RPV 95% CL QWe,SUSY QWe, SM Comparing Qwe and QWp “DIS Parity” Kurylov, R-M, Su SUSY loops SUSY dark matter E158 &QWeak QWp,SUSYQuickTime™ QWp,SM and a TIFF (Uncompressed) decompressor are needed to see this picture. Linear collider JLab Moller RPV 95% CL QWe,SUSY QWe, SM Conclusions • Precision tests of fundamental symmetries and studies of neutrino properties -- together with careful theoretical analysis -- are providing a powerful probe of the fundamental symmetries of the early universe • The information obtained from these studies complements what we learn from high energy collider experiments • We can look forward to an interesting minisymposium Ke3 decays: current status O(p6) Vus f K 0 (0) G. Isidori, CKM 2005 Ke3 decays: current status Quenched LQCD Vus Large NC G. Isidori, CKM 2005 O(p6)