Transcript Maui 05
Nuclei & the Early Universe:
Looking Beyond the Standard Model
M.J. Ramsey-Musolf
DNP Mini-Symposium: Maui ‘05
Sessions BB: M 7-10:30pm
JB: Th 9am - 12pm
KB: Th 2-5pm
Fundamental Symmetries & Cosmic History
• What were the fundamental symmetries
that governed the microphysics of
the early universe?
• What insights can precision electroweak
studies in nuclear physics provide?
Fundamental Symmetries & Cosmic History
Standard Model puzzles
Standard Model successes
Fundamental Symmetries & Cosmic History
Early universe
Present universe
Standard Model
4
2
gi
High energy desert
Weak scale
log10 ( / 0 )
Planck scale
Fundamental Symmetries & Cosmic History
Early universe
Present universe
Standard Model
4 for
A “near miss”
2
grand unification
g
Gravity
i
High energy desert
Weak scale
log10 ( / 0 )
Planck scale
Fundamental Symmetries & Cosmic History
Early universe
Present universe
Standard Model
4
Weak scale
2
gi
unstable:
Why is GF
so large?
Weak scale
Unification
Neutrino
mass Origin of
matter
High energy desert
log10 ( / 0 )
Planck scale
Fundamental Symmetries & Cosmic History
Cosmic Energy Budget
Rotation curves &
lensing
Cosmic acceleration
Stars, planets,
Human life
What is the origin of matter ?
Fundamental Symmetries & Cosmic History
Anthropic Relevance Budget
Dark Matter
Stars, planets,
Human life
Dark Energy
Baryons
What is the origin of matter ?
Fundamental Symmetries & Cosmic History
Cosmic Energy Budget
Rotation curves &
lensing
Cosmic acceleration
11
BBN
(7.3 2.5) 10
Y
11
WMAP
s (9.2
1.1)
10
the origin of matter ?
Stars, planets,
Human life B
B
What
is
SM: 1st order PT and CPV effects too weak
There must have been additional
symmetries in the earlier Universe to
• Unify all matter, space, & time
• Stabilize the weak scale
• Produce all the matter that exists
• Account for neutrino properties
• Give self-consistent quantum gravity
Supersymmetry, GUT’s, extra dimensions…
What are the new fundamental
symmetries?
Two frontiers in the search
Collider experiments
Indirect searches at
(pp, e+e-, etc) at higher
lower energies (E < MZ)
energies (E >> MZ)
but high precision
Large Hadron Collider
Ultra cold neutrons
CERN
High energy
physics
LANSCE, NIST, SNS
Particle, nuclear
& atomic physics
What are the new fundamental symmetries?
•
Why is there more matter than antimatter
in the present universe?
Electric dipole moment searches
•
What are the unseen forces that
disappeared from view as the universe
cooled?
Precision electroweak: weak decays, scattering, LFV
•
What are the masses of neutrinos and
how have they shaped the evolution of the
universe?
Neutrino oscillations, 0nbb-decay, q13 , …
Tribble report
EDMs and Baryogenesis
Present universe
Early universe
Weak Scale Baryogenesis
• B violation
• C & CP violation
Y1
• Nonequilibrium
dynamics
Sakharov, 1967
1
L
1
S
log10 ( / 0 )
Weak scale
Planck scale
Baryogenesis: New Electroweak Physics
Cohen, Kaplan, Nelson
Weak Scale Baryogenesis
• B violation
Unbroken phase
Topological transitions
new
• C & CP violation
• Nonequilibrium
dynamics
(x)
Broken phase
1st order phase
transition
CP Violation
Sakharov, 1967
new
• Is it viable?
• Can experiment constrain it?
• How reliably can we compute it?
new
new
e
EDM Probes of New CP Violation
CKM
f
e
n
199
Hg
dSM
dexp
dfuture
1040
1030
1.6 1027
6.3 1026
1031
1029
1033
1028
2.11028
1.11018
1032
1024
If new EWK CP violation is responsible for abundance
of matter, will these experiments see an EDM?
Present n-EDM limit
Proposed n-EDM limit
?
Matter-Antimatter
Asymmetry in
the Universe
Better theory
M. Pendlebury
B. Filippone
Riotto; Carena et al.;
Lee, Cirigliano, R-M
“n-EDM has killed more theories than any other single experiment”
EDM constraints & SUSY CPV
Future: EDMs & LHC
de
A
BBN
WMAP
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
dn
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
new
new
new
(x)
LargeHadron
HadronCollider
Collider
Large
Non-equilibrium QFT
new
e
Lee,
Cirigliano, R-M
Leptogenesis
Early universe
Key Ingredients
Present universe
• Heavy nR
Y1
• mnspectrum
• CP violation
Leptogenesis
• L violation
b-decay, 0nbbdecay, q13
1
S
Weak scale
log10 ( / 0 )
Planck scale
Weak decays
Vud
u c t Vcd
Vtd
d u e ne
s u e ne
b u e ne
2
2
Vud Vus Vub
2
=
Vus Vub d
Vcs Vcb s
Vts Vtb b
1
SM
0.9968 0.0014
Expt
0.94870.0010 0.04820.0008 0.000010.000007
Weak decays & new physics
Flavor-blind
SUSYVud
d
Vus V
ub
breaking
u c t Vcd Vcs Vcb s
Vtd Vts Vtb b
d u e ne
s u e ne
b u e ne
n
˜
0
n
n p e ne
˜
SUSY
e
n
A(Z,N) A(Z 1,N
1) e n e
˜
n
0 n˜
e n e
˜0
GFb
Vud 1 rb r
GF
e
O
~ 0.001
OSM
W
b-decay
˜
n
ne
CKM, (g-2),
MW, Mt ,…
e
˜
e
SUSY
M˜ L Mq˜ L
Kurylov, R-M
New physics
Weak decays
b
F
F
G
Vud 1 rb r
G
b-decay
n p e ne
A(Z,N) A(Z 1,N 1) e n e
0 e n e
0+ ! 0+ “Superallowed”
Ft ft1 R NS 1 C
b 2
F
K 2(G )
Nuclear structuredependent corrections
See J. Hardy, Thurs 2pm
b-decay
Weak decays
b
F
F
G
Vud 1 rb r
G
Ultra cold neutrons
58Ni
coated stainless guide
n p e ne
A(Z,N) A(Z 1,N 1) e n e
0 e n e
Lifetime & correlations
Flapper valve
Liquid N2
pe pn
pe
dW 1 a
An
E e En
Ee
Be reflector
LHe
Solid D2
77 K poly
UCN Detector
Tungsten Target
LANSCE: UCN “A”
NIST: tn
Future SNS: tn,
a,b,A,… Future LANSCE:
Weak decays
b
F
F
G
Vud 1 rb r
G
b-decay
n p e ne
A(Z,N) A(Z 1,N 1) e n e
0 e n e
PSI: “Pi-Beta”
e n e n ~110
0
8
b-decay
Weak decays
b
F
F
G
Vud 1 rb r
G
n p e ne
A(Z,N) A(Z 1,N 1) e n e
0 e n e
SM theory input
ne
p
W
e
n
MW
ˆ M Z2
GF
ln 2 CW ()
2 2
Weak decays
Vud
u c t Vcd
Vtd
d u e ne
s u e ne
b u e ne
kaon decay
0
K e n e
Value of Vus important
Vus Vub d
Vcs Vcb s
Vts Vtb b
GFK
Vus 1 rK r
GF
New physics:
too period
small
Details:
question
UCNA
CKM Summary: PDG04
CKM Summary: New Vus & tn ?
New tn !!
Vus & Vud
theory ?
UCNA
New 0+
info
Muon Decay: Michel Parameters
3/4
0
3/4
1
Muon Decay: Michel Parameters
Model Independent
Analysis
0
0
H
H
n
H
0
H0
Z,W
n
Prezeau, Kurylov 05
2005 Global fit: Gagliardi et al.
n
n
Erwin, Kile, Peng, R-M (in prog)
constrained by mn
mn
MPs
Model Dependent Analysis
n
W
1,2
P
ne
TWIST P
TWIST
e
First row CKM
P
MWR (GeV)
Lepton Scattering & New Symmetries
Parity-Violating electron scattering
e
e
Z
0
e , p
e
e , p
e , p
e
e , p
2
GF Q
2
A
QW F(Q ,q )
4 2
LR
“Weak Charge” ~ 1 - 4 sin2 qW ~ 0.1
Weak Mixing Angle: Scale Dependence
Czarnecki, Marciano
Erler, Kurylov, R-M
DIS-Parity, JLab
Atomic PV
nN deep inelastic
Linear
Collider e-e-
sin2qW
e+e- LEP, SLD
SLAC E158 (ee)
JLab Q-Weak (ep)
Moller, JLab
(GeV)
Comparing Qwe and QWp
Kurylov, R-M, Su
SUSY loops
SUSY
dark matter
E158 &QWeak
QWp,SUSYQuickTime™
QWp,SM and a TIFF (Uncompressed) decompressor are needed to see this picture.
Linear
collider
JLab Moller
RPV 95% CL
QWe,SUSY QWe, SM
Comparing Qwe and QWp
“DIS Parity”
Kurylov, R-M, Su
SUSY loops
SUSY
dark matter
E158 &QWeak
QWp,SUSYQuickTime™
QWp,SM and a TIFF (Uncompressed) decompressor are needed to see this picture.
Linear
collider
JLab Moller
RPV 95% CL
QWe,SUSY QWe, SM
Conclusions
• Precision tests of fundamental symmetries and
studies of neutrino properties -- together with
careful theoretical analysis -- are providing a
powerful probe of the fundamental symmetries
of the early universe
• The information obtained from these studies
complements what we learn from high energy
collider experiments
• We can look forward to an interesting minisymposium
Ke3 decays: current status
O(p6)
Vus f
K 0
(0)
G. Isidori, CKM 2005
Ke3 decays: current status
Quenched
LQCD
Vus
Large NC
G. Isidori, CKM 2005
O(p6)