SUSY can affect scattering - Institute for Nuclear Theory

Download Report

Transcript SUSY can affect scattering - Institute for Nuclear Theory

SUSY can affect scattering
Parity-Violating electron scattering
e


e
Z

0
e , p
e
e , p 

e

e , p

e , p
2
GF Q 
2
ALR 
QW  F(Q ,)

4 2

“Weak Charge” ~ 1 - 4 sin2 W ~ 0.1
SUSY can affect scattering
Neutrino-nucleus deep inelastic scattering





X


N 



Z
0

Cross section ratios

R
W



 1 2sin
X
N
W 2

2
Neutral currents mix
JZ =
JEM
J0 + 4 Q sin2W
g()
sin W 
2
2
g()  g()Y
2
Y
2
SU(2)L

U(1)Y
Weak mixing depends on scale
Weak Mixing Angle: Scale Dependence
Czarnecki, Marciano
Erler, Kurylov, MR-M
Atomic PV
N deep inelastic
sin2W
e+e- LEP, SLD
SLAC E158 (ee)
JLab Q-Weak (ep)
(GeV)
PV Electron Scattering
SLAC
Vernon W. Hughes
1921-2003
Jefferson
Lab
PV Electron Scattering
SLAC
Jefferson
Lab
Interpretation of precision measurements
How well do we now the SM predictions?
Some QCD issues
Proton Weak Charge
2
GFQ
p
p
2
ALR 
QW  F (Q , )

4 2
Weak charge
Form factors: MIT,
JLab, Mainz
Q2=0.03 (GeV/c)2
Q2>0.1 (GeV/c)2
Interpretation of precision measurements
How well do we now the SM predictions?
Some QCD issues
Proton Weak Charge
GFQ2
p
p
2
ALR 
QW  F (Q , )

4 2
FP(Q2,  -> 0) ~ Q2
Use PT to extrapolate in small Q2
domain and current PV experiments
to determine LEC’s
QW and SUSY Radiative Corrections
Tree Level
f
W
f
V
Q g
Flavor-dependent
Radiative Corrections
Q  PV (2I  4Qf  PV sin2  W )   f
f
W
f
3
Normalization
Scale-dependence of
weak mixing
Flavor-independent
Universal corrections
PV

ˆ
ˆ
 T  VB
muon decay
2

ˆ
 1
c


SUSY

 PV  ˆ 2 2 T  ˆ 2 2 2 S
cˆ  sˆ 
4sˆ ( cˆ  sˆ )
2
2
ˆ
ˆ

cˆ Z (q ) Z (M Z ) 
  2 
2
ˆs  q
MZ 

ˆ '
S,T , 
VV
2
ˆ

 cˆ  ˆ  (M Z )  ˆ 
 2 2  
 VB
2

cˆ  sˆ  ˆ
M Z 
2
gauge boson propagators
Oblique Parameters
SM fit only
No SUSY effects
Parameter Space Scan
Comparing Qwe and QWp
˜

Z

0
˜

105 parameters:
random scan
SUSY
SUSY
loopsloops
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
3000 randomly chosen
SUSY parameters but
effects are correlated
Effects in sin2W dominate
Kurylov, Su, MR-M
Negligible SUSY
loop impact on
cesium weak charge
Correlated Radiative Corrections
total
QWf  PV (2I3f  4Qf  PV sin 2 W )   f
RPV Corrections to Weak Charges


QWp  2 
k
/
k
/
j
˜
˜
˜
p  
2  2 sˆ  12k (e R )  2 11k (dR )  1 j1 (q L )
QW
1  4 sˆ
Q
 4 
k
˜

2  sˆ 12k (eR )

Q
1 4 sˆ
e
W
e
W
sˆ 2(1 sˆ 2 )
sˆ 
2
ˆ
1  2s
shift in sin2 W
Other constraints, cont’d.
MW
CKM Unitarity
APV
l2
Comparing Qwe and QWp
SUSY loops
 SUSY
dark matter
 ->

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
e+e
 is Majorana
RPV 95% CL fit to
weak decays, MW, etc.
Kurylov, Su, MR-M
Comparing Qwe and QWp
Can be a diagnostic tool to determine whether
or not
• the early Universe was supersymmetric
• there is supersymmetric dark matter
The weak charges can serve a similar
diagnostic purpose for other models for high
energy symmetries, such as left-right
symmetry, grand unified theories with extra
U(1) groups, etc.
Comparing Qwe and QWp
QWP = 0.0716
 0.0029
QWe = 0.0449
 0.0040
Experiment
SUSY Loops

E6 Z/ boson

RPV SUSY
Leptoquarks
SM
SM
Erler, Kurylov, R-M
Additional PV electron scattering ideas
Czarnecki, Marciano
Erler et al.
Atomic PV
N deep inelastic
DIS-Parity, JLab
Linear
Collider e-e-
DIS-Parity, SLAC
sin2W
e+e- LEP, SLD
SLAC E158 (ee)
Moller, JLab
JLab Q-Weak (ep)
(GeV)
Additional PV electron scattering ideas
Czarnecki, Marciano
Erler et al.
Atomic PV
N deep inelastic
DIS-Parity, JLab
Linear
Collider e-e-
DIS-Parity, SLAC
sin2W
e+e- LEP, SLD
SLAC E158 (ee)
Moller, JLab
JLab Q-Weak (ep)
(GeV)
Neutrino-nucleus deep inelastic
scattering conflicts with SUSY
Cross section ratios
R   
CC
N
R   
CC
N
NC
N
NC
N
Exp’t vs. SM Theory: NuTeV
exp

SM

exp

SM

R  R  0.0033 0.0007
R  R  0.0019 0.0016
R  rR
2
R 
 (1  2sin  W ) / 2 
1r

r  N N
CC
CC
-Nucleus DIS, Cont’d.
Cross section ratios
R    g rg
NC
N
CC
N
2
L
2
R
g
1 2
R
R     g r g
NC
N
CC
N
2
L
2
L,R

 
 
r 
CC
N
2
NC
N
CC
N




CC
N
 (
q
Radiative corrections
  I  Qq
q
L
3
L
  Qq 
q
L
W  
q
L
sin2
W  
sin2
q
R
NC,CC

L,R
q
2
L ,R
)
Nucleus DIS: NuTeV
K. McFarland, Rochester
NuTeV-SM Discrepancy
exp

SM

exp

SM

R  R  0.0033 0.0007
R  R  0.0019 0.0016
Paschos-Wolfenstein Relation
R  rR
2
R 
 (1  2sin  W ) / 2 
1r

-Nucleus DIS: SUSY Loop Corrections
wrong
sign
NuTeV
Kurylov, SU, MR-M
RPV Effects
k
˜
  12k (eR )
NC
N
k
/
k
˜
˜
  12k (e R )  21k (d R )
CC
N
1
k
/
k
˜
˜
  sˆ  12k (e R )   21k (d R )
3
1
d
k
/
k
˜
 R  sˆ  12k (e˜ R )   2k 1 (d L )
3
2
u
u
 L   R   ˆs 12k ( e˜Rk )
3
d
L
unconstrained
elsewhere
-Nucleus DIS: RPV Effects
wrong
sign
NuTeV
Kurylov, SU, MR-M
N scattering conflicts with SUSY
Czarnecki, Marciano
Erler, Kurylov, MR-M
Atomic PV
N deep inelastic
Increase Vus for CKM
unitarity (BNL E865, Ke3)
sin2W
e+e- LEP, SLD
SLAC E158 (ee)
JLab Q-Weak (ep)
(GeV)
NuTeV Anomaly: An explanation?
Electric dipole moment (EDM)
searches may test SUSY CP-violation
E

d  dS

 EDM
dS E

h
C: e- $ e+
T-odd , CP-odd by
CPT theorem
P: E $-E, S $ S
Electric dipole moment (EDM)
searches may test SUSY CP-violation
SM: CKM
E
d  dS
u
c
Vud

t Vcd

Vtd
Vus Vub d 
 
Vcs Vcb s 
 
Vts Vtb b 

 EDM
d S 
E

h
C: e- $ e+

P: E $-E, S $ S
1,  2,  3, e
i
T-odd , CP-odd by
CPT theorem
Electric dipole moment (EDM)
searches may test SUSY CP-violation
SM: Strong CP
E
 s  ˜
LStrongCP  QCD G G
8
d  dS

 EDM

d S  
E

h
C: e- $ e+
P: E $-E, S $ S
Gluons: systems with
quarks
T-odd , CP-odd by
CPT theorem

Electric dipole moment (EDM)
searches may test SUSY CP-violation
CKM
f
dSM
dexp
dfuture
e
 1040
 1.6 1027
 1031
n
 1030
 6.3 1026
 1029
Hg
 1033
 2.11028
 1032

 1028
 1.11018
 1024
199
If SUSY CP violation is responsible for abundance
of matter, will these experiments see an EDM?

Electric dipole moment (EDM)
searches may test new CP-violation
DeMille, Romalis
CKM
f
dSM
dexp
dfuture
e
 1040
 1.6 1027
 1031
n
 1030
 6.3 1026
 1029
E1025
ext28
 10
 2.11028
 1032
Yale 24
 10
199
+Hg
Pb 
Ein
O–
t
 1.11018
Superfluid He UCN
converter
with high E-field

Electric dipole moment (EDM)
searches may test new CP-violation
CKM
f
e
dSM
 1040
n
 1030
1:199
BHg
from E  1025
LANL
28

 10
dexp
dfuture
 1.6 1027
 1031
 6.3 1026
 1029
 2.110282: E from
B
1032
 1.11018
V
E
Sample magnetization
M  deE/T
 1024
Amherst
B
Sample voltage
V  de

Electric dipole moment (EDM)
searches may test new CP-violation
CKM
f
dSM
dexp
dfuture
e
 1040
 1.6 1027
 1031
n
 1030
 6.3 1026
 1029
Hg
 1025

 1028
 2.11028
 1032
LANSCE!SNS
18
 1.110
 1024
199
Superfluid He UCN
converter
with high E-field

Electric dipole moment (EDM)
searches may test new CP-violation
CKM
f
dSM
dexp
dfuture
e
 1040
 1.6 1027
 1031
n
 1030
 6.3 1026
 1029
Hg
 1025
 2.11028

 1028
 1.11018
 1032
Washington
 1024
199
Princeton
Argonne…

Electric dipole moment (EDM)
searches may test new CP-violation
CKM
f
dSM
dexp
dfuture
e
 1040
 1.6 1027
 1031
n
 1030
 6.3 1026
 1029
Hg
 1025
 2.11028

 1028
 1.11018
 1032
Storage 24
ring:
 10
BNL
199
JPARC…
Also
deuteron
Present n-EDM limit
Proposed n-EDM limit
Matter-Antimatter
Asymmetry in
the Universe
Better theory
B. Filippone
“n-EDM has killed more theories than any other single experiment”
Electric dipole moment (EDM) searches
may test SUSY CP-violation
Present universe
Early universe
Weak Scale Baryogenesis
• B violation
• C & CP violation
 Y1

• Nonequilibrium
dynamics
Sakharov, 1967
 1
L

 1
S

log 10 ( / 0 )
Weak scale
Planck scale
Electric dipole moment (EDM) searches
may test SUSY CP-violation
Weak Scale Baryogenesis
• B violation
Unbroken phase
Topological transitions
H
t˜
• C & CP violation
• Nonequilibrium
dynamics
Cohen, Kaplan, Nelson
Huet & Nelson
Riotto…..
Broken phase
CP Violation
1st order phase transition
Sakharov, 1967
e˜
0
EDM: Standard SUSY - breaking


e˜
e


Electric dipole moment (EDM) searches
may test SUSY CP-violation
Weak Scale Baryogenesis
• B violation
Unbroken phase
Topological transitions
• C & CP violation
• Nonequilibrium
dynamics
H
t˜
Broken phase
CP Violation
1st order phase transition
Sakharov, 1967
e˜
0
• How model-dependent ?
• Theoretical uncertainties?


e˜
e


Present n-EDM limit
Proposed n-EDM limit
?
Matter-Antimatter
Asymmetry in
the Universe
Better theory
B. Filippone
“n-EDM has killed more theories than any other single experiment”