SUSY can affect scattering - Institute for Nuclear Theory
Download
Report
Transcript SUSY can affect scattering - Institute for Nuclear Theory
SUSY can affect scattering
Parity-Violating electron scattering
e
e
Z
0
e , p
e
e , p
e
e , p
e , p
2
GF Q
2
ALR
QW F(Q ,)
4 2
“Weak Charge” ~ 1 - 4 sin2 W ~ 0.1
SUSY can affect scattering
Neutrino-nucleus deep inelastic scattering
X
N
Z
0
Cross section ratios
R
W
1 2sin
X
N
W 2
2
Neutral currents mix
JZ =
JEM
J0 + 4 Q sin2W
g()
sin W
2
2
g() g()Y
2
Y
2
SU(2)L
U(1)Y
Weak mixing depends on scale
Weak Mixing Angle: Scale Dependence
Czarnecki, Marciano
Erler, Kurylov, MR-M
Atomic PV
N deep inelastic
sin2W
e+e- LEP, SLD
SLAC E158 (ee)
JLab Q-Weak (ep)
(GeV)
PV Electron Scattering
SLAC
Vernon W. Hughes
1921-2003
Jefferson
Lab
PV Electron Scattering
SLAC
Jefferson
Lab
Interpretation of precision measurements
How well do we now the SM predictions?
Some QCD issues
Proton Weak Charge
2
GFQ
p
p
2
ALR
QW F (Q , )
4 2
Weak charge
Form factors: MIT,
JLab, Mainz
Q2=0.03 (GeV/c)2
Q2>0.1 (GeV/c)2
Interpretation of precision measurements
How well do we now the SM predictions?
Some QCD issues
Proton Weak Charge
GFQ2
p
p
2
ALR
QW F (Q , )
4 2
FP(Q2, -> 0) ~ Q2
Use PT to extrapolate in small Q2
domain and current PV experiments
to determine LEC’s
QW and SUSY Radiative Corrections
Tree Level
f
W
f
V
Q g
Flavor-dependent
Radiative Corrections
Q PV (2I 4Qf PV sin2 W ) f
f
W
f
3
Normalization
Scale-dependence of
weak mixing
Flavor-independent
Universal corrections
PV
ˆ
ˆ
T VB
muon decay
2
ˆ
1
c
SUSY
PV ˆ 2 2 T ˆ 2 2 2 S
cˆ sˆ
4sˆ ( cˆ sˆ )
2
2
ˆ
ˆ
cˆ Z (q ) Z (M Z )
2
2
ˆs q
MZ
ˆ '
S,T ,
VV
2
ˆ
cˆ ˆ (M Z ) ˆ
2 2
VB
2
cˆ sˆ ˆ
M Z
2
gauge boson propagators
Oblique Parameters
SM fit only
No SUSY effects
Parameter Space Scan
Comparing Qwe and QWp
˜
Z
0
˜
105 parameters:
random scan
SUSY
SUSY
loopsloops
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
3000 randomly chosen
SUSY parameters but
effects are correlated
Effects in sin2W dominate
Kurylov, Su, MR-M
Negligible SUSY
loop impact on
cesium weak charge
Correlated Radiative Corrections
total
QWf PV (2I3f 4Qf PV sin 2 W ) f
RPV Corrections to Weak Charges
QWp 2
k
/
k
/
j
˜
˜
˜
p
2 2 sˆ 12k (e R ) 2 11k (dR ) 1 j1 (q L )
QW
1 4 sˆ
Q
4
k
˜
2 sˆ 12k (eR )
Q
1 4 sˆ
e
W
e
W
sˆ 2(1 sˆ 2 )
sˆ
2
ˆ
1 2s
shift in sin2 W
Other constraints, cont’d.
MW
CKM Unitarity
APV
l2
Comparing Qwe and QWp
SUSY loops
SUSY
dark matter
->
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
e+e
is Majorana
RPV 95% CL fit to
weak decays, MW, etc.
Kurylov, Su, MR-M
Comparing Qwe and QWp
Can be a diagnostic tool to determine whether
or not
• the early Universe was supersymmetric
• there is supersymmetric dark matter
The weak charges can serve a similar
diagnostic purpose for other models for high
energy symmetries, such as left-right
symmetry, grand unified theories with extra
U(1) groups, etc.
Comparing Qwe and QWp
QWP = 0.0716
0.0029
QWe = 0.0449
0.0040
Experiment
SUSY Loops
E6 Z/ boson
RPV SUSY
Leptoquarks
SM
SM
Erler, Kurylov, R-M
Additional PV electron scattering ideas
Czarnecki, Marciano
Erler et al.
Atomic PV
N deep inelastic
DIS-Parity, JLab
Linear
Collider e-e-
DIS-Parity, SLAC
sin2W
e+e- LEP, SLD
SLAC E158 (ee)
Moller, JLab
JLab Q-Weak (ep)
(GeV)
Additional PV electron scattering ideas
Czarnecki, Marciano
Erler et al.
Atomic PV
N deep inelastic
DIS-Parity, JLab
Linear
Collider e-e-
DIS-Parity, SLAC
sin2W
e+e- LEP, SLD
SLAC E158 (ee)
Moller, JLab
JLab Q-Weak (ep)
(GeV)
Neutrino-nucleus deep inelastic
scattering conflicts with SUSY
Cross section ratios
R
CC
N
R
CC
N
NC
N
NC
N
Exp’t vs. SM Theory: NuTeV
exp
SM
exp
SM
R R 0.0033 0.0007
R R 0.0019 0.0016
R rR
2
R
(1 2sin W ) / 2
1r
r N N
CC
CC
-Nucleus DIS, Cont’d.
Cross section ratios
R g rg
NC
N
CC
N
2
L
2
R
g
1 2
R
R g r g
NC
N
CC
N
2
L
2
L,R
r
CC
N
2
NC
N
CC
N
CC
N
(
q
Radiative corrections
I Qq
q
L
3
L
Qq
q
L
W
q
L
sin2
W
sin2
q
R
NC,CC
L,R
q
2
L ,R
)
Nucleus DIS: NuTeV
K. McFarland, Rochester
NuTeV-SM Discrepancy
exp
SM
exp
SM
R R 0.0033 0.0007
R R 0.0019 0.0016
Paschos-Wolfenstein Relation
R rR
2
R
(1 2sin W ) / 2
1r
-Nucleus DIS: SUSY Loop Corrections
wrong
sign
NuTeV
Kurylov, SU, MR-M
RPV Effects
k
˜
12k (eR )
NC
N
k
/
k
˜
˜
12k (e R ) 21k (d R )
CC
N
1
k
/
k
˜
˜
sˆ 12k (e R ) 21k (d R )
3
1
d
k
/
k
˜
R sˆ 12k (e˜ R ) 2k 1 (d L )
3
2
u
u
L R ˆs 12k ( e˜Rk )
3
d
L
unconstrained
elsewhere
-Nucleus DIS: RPV Effects
wrong
sign
NuTeV
Kurylov, SU, MR-M
N scattering conflicts with SUSY
Czarnecki, Marciano
Erler, Kurylov, MR-M
Atomic PV
N deep inelastic
Increase Vus for CKM
unitarity (BNL E865, Ke3)
sin2W
e+e- LEP, SLD
SLAC E158 (ee)
JLab Q-Weak (ep)
(GeV)
NuTeV Anomaly: An explanation?
Electric dipole moment (EDM)
searches may test SUSY CP-violation
E
d dS
EDM
dS E
h
C: e- $ e+
T-odd , CP-odd by
CPT theorem
P: E $-E, S $ S
Electric dipole moment (EDM)
searches may test SUSY CP-violation
SM: CKM
E
d dS
u
c
Vud
t Vcd
Vtd
Vus Vub d
Vcs Vcb s
Vts Vtb b
EDM
d S
E
h
C: e- $ e+
P: E $-E, S $ S
1, 2, 3, e
i
T-odd , CP-odd by
CPT theorem
Electric dipole moment (EDM)
searches may test SUSY CP-violation
SM: Strong CP
E
s ˜
LStrongCP QCD G G
8
d dS
EDM
d S
E
h
C: e- $ e+
P: E $-E, S $ S
Gluons: systems with
quarks
T-odd , CP-odd by
CPT theorem
Electric dipole moment (EDM)
searches may test SUSY CP-violation
CKM
f
dSM
dexp
dfuture
e
1040
1.6 1027
1031
n
1030
6.3 1026
1029
Hg
1033
2.11028
1032
1028
1.11018
1024
199
If SUSY CP violation is responsible for abundance
of matter, will these experiments see an EDM?
Electric dipole moment (EDM)
searches may test new CP-violation
DeMille, Romalis
CKM
f
dSM
dexp
dfuture
e
1040
1.6 1027
1031
n
1030
6.3 1026
1029
E1025
ext28
10
2.11028
1032
Yale 24
10
199
+Hg
Pb
Ein
O–
t
1.11018
Superfluid He UCN
converter
with high E-field
Electric dipole moment (EDM)
searches may test new CP-violation
CKM
f
e
dSM
1040
n
1030
1:199
BHg
from E 1025
LANL
28
10
dexp
dfuture
1.6 1027
1031
6.3 1026
1029
2.110282: E from
B
1032
1.11018
V
E
Sample magnetization
M deE/T
1024
Amherst
B
Sample voltage
V de
Electric dipole moment (EDM)
searches may test new CP-violation
CKM
f
dSM
dexp
dfuture
e
1040
1.6 1027
1031
n
1030
6.3 1026
1029
Hg
1025
1028
2.11028
1032
LANSCE!SNS
18
1.110
1024
199
Superfluid He UCN
converter
with high E-field
Electric dipole moment (EDM)
searches may test new CP-violation
CKM
f
dSM
dexp
dfuture
e
1040
1.6 1027
1031
n
1030
6.3 1026
1029
Hg
1025
2.11028
1028
1.11018
1032
Washington
1024
199
Princeton
Argonne…
Electric dipole moment (EDM)
searches may test new CP-violation
CKM
f
dSM
dexp
dfuture
e
1040
1.6 1027
1031
n
1030
6.3 1026
1029
Hg
1025
2.11028
1028
1.11018
1032
Storage 24
ring:
10
BNL
199
JPARC…
Also
deuteron
Present n-EDM limit
Proposed n-EDM limit
Matter-Antimatter
Asymmetry in
the Universe
Better theory
B. Filippone
“n-EDM has killed more theories than any other single experiment”
Electric dipole moment (EDM) searches
may test SUSY CP-violation
Present universe
Early universe
Weak Scale Baryogenesis
• B violation
• C & CP violation
Y1
• Nonequilibrium
dynamics
Sakharov, 1967
1
L
1
S
log 10 ( / 0 )
Weak scale
Planck scale
Electric dipole moment (EDM) searches
may test SUSY CP-violation
Weak Scale Baryogenesis
• B violation
Unbroken phase
Topological transitions
H
t˜
• C & CP violation
• Nonequilibrium
dynamics
Cohen, Kaplan, Nelson
Huet & Nelson
Riotto…..
Broken phase
CP Violation
1st order phase transition
Sakharov, 1967
e˜
0
EDM: Standard SUSY - breaking
e˜
e
Electric dipole moment (EDM) searches
may test SUSY CP-violation
Weak Scale Baryogenesis
• B violation
Unbroken phase
Topological transitions
• C & CP violation
• Nonequilibrium
dynamics
H
t˜
Broken phase
CP Violation
1st order phase transition
Sakharov, 1967
e˜
0
• How model-dependent ?
• Theoretical uncertainties?
e˜
e
Present n-EDM limit
Proposed n-EDM limit
?
Matter-Antimatter
Asymmetry in
the Universe
Better theory
B. Filippone
“n-EDM has killed more theories than any other single experiment”