Transcript Document

Sub Z0 Supersymmetry
Precision Electroweak Physics
Below the Z0 Pole
M.J. Ramsey-Musolf
J. Erler
A. Kurylov
S. Su
Outline
• Precision measurements & radiative corrections
The Standard Model & SUSY
• Charged Current Universality
Is SUSY-breaking flavor neutral ?
An evolving story:
New Ke3 data &
analyses; neutron
b-decay
• Neutral currents
Is there SUSY dark matter ?
• Some QCD Issues
How well do we know the Standard Model predictions ?
I. Radiative Corrections & Precision
Measurements: SM & SUSY
Why we love the Standard Model

The Fermi theory of weak decays
   ee

e
 
H

EFF
e

F
n  pee
GFb
1

GF

p
n 
b
F  
e
e
G
G
b



  L eL   e
HEFF  p (gV  gA  5 )n eL   e
2
2

gV 1, gA  1.26
 (1  5 )
The Fermi theory and QED corrections


e
e



 

  

e
e

 
QED radiative
corrections:
finite


2
5
  25
G
m
1
F 
2 

1
   
3 

  192  2  4



The Fermi theory and higher order
weak contributions

e


 

e
e





e




e




e
e



Weak radiative corrections:

e

infinite
Can’t be absorbed through suitable
re-definition of GF in HEFF


 
e

All radiative corrections can be incorporated in
the Standard Model with a finite number of terms

g



W

e
e


g
g


e



W  e
Z0
e


Re-define g
e











0
Z

e
e
W








Finite
e
GF encodes the effects of all higher order
weak radiative corrections

g
W





e





g

e

Z0

e
W





e



e





e
W





2 
GF
g
1 Dr  

2 
2 8MW
Drdepends on parameters
of particles inside loops

W


e
Comparing radiative corrections in different
processes can probe particle spectrum

Z
e
0
g
g



e

  



Z0






e
Z0


e
e



Z0
e



GFZ  g2


  2 1 DrZ 
2 8MW
Drdiffers from DrZ

Z0
e


Comparing radiative corrections in different
processes can probe particle spectrum
GFZ
 1 DrZ  Dr 

GF
Z
t
0



Z
0
W

b
W

t
t

m
DrZ ~ ln
 M
2
t
2
W



 mt2
Dr ~
2
 MW
Comparing radiative corrections in different
processes can probe particle spectrum
Direct
Measurements
Radiative
corrections
• Precision measurements
predicted a range for mt
before top quark discovery
• mt >> mb !
• mt is consistent with that
range
• It didn’t have to be that
way
Stunning SM Success
J. Ellison, UCR
Can we place analogous constraints
on new physics using low-energy
precision measurements ?
This talk: SUSY
Minimal Supersymmetric
Standard Model (MSSM)
LSM

LSM + LSUSY
e L,R , q L,R
e˜ L,R , q˜ L,R
sfermions
W ,Z , , g
˜ , Z˜ ,
˜ , g˜
W
gauginos
Hu , Hd
˜ ,H
˜
H
u
d
Higgsinos

0
˜
˜
˜
˜
˜
˜
W, Z ,, Hu, d   , 
tan b  u  d
Charginos,
neutralinos
Minimal Supersymmetric
Standard Model (MSSM)
LSM

LSM + LSUSY
+ Lsoft
˜
M M
Lsoft
˜ M
gives M
contains 105 new parameters
How is SUSY broken?
The Fermi constant is too large
2
GF
g

2
2 8MW
g
M 
4
2
2
W
2
WEAK
WEAK ~ 250 GeV GF ~ 10-5/MP2


 NEW
H0
H0


D
2
WEAK
~ M
2


SUSY protects GF from shrinking
 NEW
H0
˜ NEW

H0
H0

H0

D

2
WEAK


~ M  M  log terms
2

2

˜
=0 if SUSY is exact
How is SUSY broken?
Visible Sector:
Hidden Sector:
SUSY-breaking
MSSM
Flavor-blind mediation
Gravity-Mediated (mSUGRA)
W˜ , Z˜ ,˜ , g˜
H
f˜
f˜
M1 / 2
M
2
0
Hu
Hd
f˜
A0
b0
How is SUSY broken?
Visible Sector:
Hidden Sector:
SUSY-breaking
MSSM
Flavor-blind mediation
Gauge-Mediated (GMSB)
f˜
˜ , Z˜ ,
˜ , g˜
W
M1 / 2
messengers
a


4
W,Z,...
 a 
M     Ca
4
2
0
2
A0  0
b0  0
Mass evolution
2
˜f
dM
dt
3
˜
  a C M
a
˜f
a
t
2
ln

a1
˜
M
a
gaugino mass
˜f
a
C 0

M ˜f
increases as
Mq˜
increases faster than
Mq˜  M˜
group structure
decreases
M˜
q˜
3
˜
(C  0,C3  0)
at the weak scale
Sfermion Mixing
M
˜2
˜f L
2
ˆ
M   2
M LR
M 
2 
˜
M f˜ 
R
2
LR
m f (  t anb  A f )
M  
m f (  cot b  A f )
2
LR
f˜L , ˜f R
f˜1 , ˜f2
Qf < 0
Qf > 0
MSSM and R Parity
PR  1
3(BL)
1
2S
Matter Parity: An exact symmetry of the SM
SM Particles:
Superpartners:
PR  1
PR  1
MSSM and R Parity
MSSM conserves
PR
vertices have even
number of superpartners
Consequences
0
˜
 Lightest SUSY particle  
is stable
viable dark matter candidate
 Proton is stable
 Superpartners appear only in loops
Precision Measurements: SUSY Sensitivity
 SUSY
DO
 M 
 SM   ˜ 
O
 M
Muon (g-2):
SUSY
2
M=m ~ 2 x 10-9

Weak processes:
M=MW
exp ~
 ~ 10-3
1 x 10-9
II. Charged Current Processes
Is SUSY-breaking mediation flavor blind?
Visible Sector:
MSSM
Hidden Sector:
SUSY-breaking
Charged Current (non) Universality
2
g
M CC 
2 (V  A)  (V  A)
8MW
Fermi Constants
 decay
GF
g2

2
2 8MW
b decay
GFb
g2

2 Vud
2 8MW
g 2 8MW2 is universal
Universality obscured by
1  Dr 
1  Dr 

b
GbF GF  Vud 1  Drb  Dr 
Fermi Constants, Cont’d

F
b
F
5
G  (1.16639 0.00001)10
5
G  (1.1312 0.0007) 10

GeV-2

0 0
GeV-2
Radiative Corrections
Drb  Dr
~ 

  MW M˜

2
~
0.2%
~
modulo log enhancements
SM
SUSY

Fermi Constants, Cont’d

F
b
F
5
G  (1.16639 0.00001)10
5
G  (1.1312 0.0007) 10

0 0
GeV-2
Status in early ‘04
CKM Unitarity
2

GeV-2
2
Vud  Vus  Vub
2
=
1
SM
0.9968 0.0014
Data + SM
Require
(Drb  Dr )
SUSY
0
Drb  Dr

SUSY Radiative Corrections
Drb  Dr
Universal
e
u
W
W
e
d
e
u
W
d
e





e
W

W

e

e
W

e

SUSY Radiative Corrections
Drb  Dr
Non-universal
e
u

W
˜0

u
e
˜

u˜
d
W
e
d

˜

e

e




e
˜0

  
˜

˜


e


˜

e

Vertex Corrections (Dominant)
Non-universal
u
u
W

d
˜

0
W


˜
˜

0

W
  
˜

d

W
˜0

u˜
d˜
d


u˜
u

˜

W

˜0

˜

˜

W
  
Other Inputs
1. Muon (g-2):
Size of error bar crucial
2. W Mass:
M
G 
2MW2 MZ2  M 1  Dr 
2
Z
2
W

F
0.0091 Dr
SUSY

3. Superpartner Masses:
 0.0037
mt , MH
Start analysis with collider
lower bounds and vary later
Model-independent Analysis
Usual approaches:
• Assume a model for SUSY-breaking mediation
105 parameters
a few parameters (M1/2, M0, A0, …)
• Assume most general SUSY-breaking sector
105 parameters
random scan of parameter space
This study:
• Assume most general SUSY-breaking sector
105 parameters
analytic exploration of parameter space
Model Independent Analysis
1.
Maximal L-R Mixing
No solution
2. Increase M
Changes sign of Drb- Drunless
M˜2  M˜1 ,no solution
3. Increase M˜ , Mq˜
Alleviates (g-2)problem but
shrinks allowed region
4. Reduce L-R Mixing
Allowed solution but conflict with
flavor-blind SUSY-breaking
u
d
5. Non-universal squarks  LR   LR
Allowed solution, large gluino
effects, but conflict with flavorblind SUSY-breaking
6. Heavy gluinos, Mg˜  500 GeV
muon g-2
CKM ‘04
W mass
 f˜  M˜f 2 Mf˜1
Model Independent Analysis
Maximal L-R Mixing
No solution
2. Increase M
Changes sign of Drb- Drunless
M˜2  M˜1 ,no solution
3. Increase M˜ , Mq˜
Alleviates (g-2)problem but
shrinks allowed region
4. Reduce L-R Mixing
Allowed solution but conflict with
flavor-blind SUSY-breaking
u
d
5. Non-universal squarks  LR   LR
Allowed solution, large gluino
effects, but conflict with flavorblind SUSY-breaking
6. Heavy gluinos, Mg˜  500 GeV
Flavor-blind
SUSY-breaking
1.
CKM ‘04
M˜ L  Mq˜ L
Model Independent Analysis
1.
Maximal L-R Mixing
No solution
2. Increase M
Changes sign of Drb- Drunless
M˜2  M˜1 ,no solution
3. Increase M˜ , Mq˜
Alleviates (g-2)problem but
shrinks allowed region
4. Reduce L-R Mixing
Allowed solution but conflict with
flavor-blind SUSY-breaking
u
d
5. Non-universal squarks  LR   LR
Allowed solution, large gluino
effects, but conflict with flavorblind SUSY-breaking
6. Heavy gluinos, Mg˜  500 GeV
muon g-2
W Mass
CKM ‘04
Ad  At
Inconsistent with Higgs mass
bounds, flavor-blind SUSYbreaking, color neutral vacuum
CC (non) universality & the MSSM
Data appeared to conflict with MSSM & models
having flavor-blind SUSY-breaking mediation
Possible resolutions:
1. MSUSY > TeV
See end
of talk
LANSCE UCN
SUSY irrelevant to low
energy observables
2. Hadronic effects in SM
predictions
Better control of non-pQCD
3. Something is wrong with exp’t
Exp’t: n bdecay, Ke3 decay
4. New models of SUSY-breaking
???
5. Go beyond the MSSM
Break R-parity
But NuTeV
Ke3 decays: recent developments
Vus
Vus  f
K 0 

V. Cirigliano
(0)
Ke3 decays: current status
O(p6)
Vus  f
K 0 

(0)
G. Isidori, CKM 2005
Ke3 decays: current status
Quenched
LQCD
Vus
Large NC
G. Isidori, CKM 2005
O(p6)
CC (non) universality & the MSSM
Data appeared to conflict with MSSM & models
having flavor-blind SUSY-breaking mediation
Possible resolutions:
1. MSUSY > TeV
SUSY irrelevant to low
energy observables
2. Hadronic effects in SM
predictions
3. Something is wrong with
exp’t
Better control of nonpQCD
Exp’t: n b decay, Ke3
decay
4. New models of SUSYbreaking
5. Go beyond the MSSM
???
Break R-parity
III. Neutral Current Processes
Is there SUSY dark matter?
Weak Neutral Currents at Low Energies
M
NC
GF
NC 
J
J
~

NC
2 2
gVf  2I3f  4Qf
W
sin2
J  f  g  g  f
NC

f
V
g Af  2I3f
Parity-violating electron scattering
LPV

GF
f
Q
2 2 W
Weak Charge

e   5e f   f
f
A 5
Weak Charges
QWp = 1 - 4 sin2W ~ 0.1
QWe = -1 + 4 sin2W ~ -0.1
Need  ~ few percent to probe SUSY
Weak Mixing Angle: Scale Dependence
Czarnecki, Marciano
Erler. Kurylov, MR-M
Atomic PV
N deep inelastic
sin2W
e+e- LEP, SLD
SLAC E158 (ee)
JLab Q-Weak (ep)
(GeV)
QW and SUSY Radiative Corrections
Tree Level
Q g
f
W
f
V
Flavor-dependent
Radiative Corrections
Q  PV (2I  4Qf  PV sin2  W )   f
f
W
f
3
Normalization
Scale-dependence of
weak mixing
Flavor-independent
Universal corrections

ˆ
ˆ
PV  T  VB

SUSY
PV
muon decay
 cˆ 2 
 1

 ˆ 2 2 T  ˆ 2 2 2 S
cˆ  sˆ 
4sˆ ( cˆ  sˆ )
2
2
ˆ
ˆ

cˆ Z (q ) Z (M Z ) 
  2 
2
ˆs  q
MZ 

ˆ '
S,T, 
VV
2
ˆ

 ˆ 

ˆ
ˆ

(M
)
c
D



Z
 2 2  
 VB
2

cˆ  sˆ  ˆ
M Z 
2
gauge boson propagators
Oblique Parameters
SM fit only
No SUSY effects
Parameter Space Scan
Comparing Qwe and QWp
SUSY
SUSY
loopsloops
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
3000 randomly chosen
SUSY parameters but
effects are correlated
Effects in sin2W dominate
Negligible SUSY
loop impact on
cesium weak charge
Correlated Radiative Corrections
total
QWf  PV (2I3f  4Qf  PV sin2 W )   f
Correlated Radiative Corrections
susy
T
Z
VB
S
e- anapole
R-Parity Violation (RPV)
DL=1
WRPV = ijk LiLjEk + ijk LiQjDk +/i LiHu
+ ijkUiDjDk
DB=1 proton decay:
Set ijk =0
Li, Qi
SU(2)L doublets
Ei, Ui, Di
SU(2)L singlets
Four-fermion Operators
e
e
12k
e˜ Rk
q˜ Lj
1j1
12k


e
d
1j1
e
d
DL=1
DL=1
D 12 k 
12 k
2
2
˜eRk
4 2GF M
D
/
1j 1

/ 2
ij i

4 2GF Mq2˜ j
L
Corrections to Weak Charges


DQWp  2 
k
/
k
/
j
˜
˜
˜
p  
2  2 sˆ D 12k (e R )  2D 11k (dR )  D1 j1 (q L )
QW
1  4 sˆ
DQ
 4 
k
˜

2  sˆ D12 k (eR )

Q
1 4 sˆ
e
W
e
W
sˆ 2 (1 sˆ 2 )
sˆ 
2
ˆ
1  2s
shift in sin2 W
Other Constraints
1. CKM unitarity
2. l2 decays
3. -GF-MZ-MW relation
4. Cesium atomic PV
Other constraints, cont’d.
MW
CKM Unitarity
APV
l2
Comparing Qwe and QWp
 SUSY
dark matter
SUSY loops
 ->

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
e+e
 is Majorana
RPV 95% CL
Comparing Qwe and QWp
QWP = 0.0716
 0.0029
QWe = 0.0449
 0.0040
Experiment
SUSY Loops

E6 Z/ boson

RPV SUSY
Leptoquarks
SM
SM
Erler, Kurylov, R-M
Additional PV electron scattering ideas
Czarnecki, Marciano
Erler et al.
DIS-Parity, JLab
Atomic PV
Linear
Collider e-e-
N deep inelastic
DIS-Parity, SLAC
sin2W
e+e- LEP, SLD
SLAC E158 (ee)
JLab Q-Weak (ep)
Moller, JLab
(GeV)
Comparing AdDIS and Qwp,e
e
RPV
p
Loops
Comparing Qwe and QWp
“DIS Parity”
Kurylov, R-M, Su
SUSY loops
 SUSY
dark matter
E158 &QWeak
QWp,SUSYQuickTime™
QWp,SM and a TIFF (Uncompressed) decompressor are needed to see this picture.
Linear
collider
JLab Moller
RPV 95% CL
QWe,SUSY QWe, SM
Weak Mixing Angle: Scale Dependence
Czarnecki, Marciano
Erler, Kurylov, MR-M
Atomic PV
N deep inelastic
Increase Vus for CKM
unitarity (BNL E865, Ke3)
sin2W
e+e- LEP, SLD
SLAC E158 (ee)
JLab Q-Weak (ep)
(GeV)
Weak Neutral Currents at Low Energies
M
NC
GF
NC 
J
J
~

NC
2 2
gVf  2I3f  4Qf
W
sin2
J  f  g  g  f
NC

f
V
f
A 5
g Af  2I3f
-Nucleus Deep Inelastic Scattering
5 q
NC
Lq,NC   G F 

q   2L PL  2RPR
 (1  )
2
Lq,CC

GF 
2
CC
 
q
  (1  5 ) u  (1  5 )d
q
q
+ h.c.
-Nucleus DIS, Cont’d.
Cross section ratios
R    g rg
NC
N
CC
N
2
L
2
R
g
1 2
R
R     g r g
NC
N
CC
N
2
L
2
L,R

 

r 
NC
N
CC
N
CC
N

2

  ( Lq ,R )2
 q
CC
N
Radiative corrections
  I  Qq
q
L
3
L
  Qq 
q
L
W  
q
L
sin2
W  
sin2
q
R
NC,CC

L,R
NuTeV-SM Discrepancy
R  R  0.0033 0.0007
exp

SM

R  R  0.0019 0.0016
exp

SM

Paschos-Wolfenstein Relation
R  rR
2
R 
 (1  2sin W ) /2 
1r

-Nucleus DIS: SUSY Loop Corrections
wrong
sign
RPV Effects
k
˜
  D12 k (eR )
NC
N
k
/
k
˜
˜
  D12 k (eR )  D21k (d R )
CC
N
1
k
/
k
˜
˜
  sˆ D12k (eR )  D21k (d R )
3
1
d
k
/
k
˜
˜
R  sˆ D12k (eR )  D2k1(d L )
3
2
u
u
k
˜
L  R   ˆs D12 k ( eR )
3
d
L
unconstrained
elsewhere
-Nucleus DIS: RPV Effects
-Nucleus DIS: RPV Effects
Neutral Currents: Summary
• Comparison of weak charges may allow one
to distinguish between SUSY with or
without R parity conservation
Test for viability of SUSY dark matter,
solution to the charged current
problem, and Majorana character of
the neutrino
• SUSY presently cannot account for the
NuTeV anomaly
Hadronic physics in the SM or more
exotic new physics scenario
responsible
IV. Interpretation issues
Do we have QCD under sufficient control?
Interpretation of precision measurements
How well do we now the SM predictions?
Some QCD issues
Proton Weak Charge
GFQ
p
p
2
ALR 
QW  F (Q , )

4 2
2
Weak charge
Form factors: MIT,
JLab, Mainz
Q2=0.03 (GeV/c)2
Q2>0.1 (GeV/c)2
Interpretation of precision measurements
How well do we now the SM predictions?
Some QCD issues
Proton Weak Charge
GFQ2
p
p
2
ALR 
QW  F (Q , )

4 2
FP(Q2,  -> 0) ~ Q2
Use PT to extrapolate in small Q2
domain and current PV experiments
to determine LEC’s
QCD Effects in QWP
Box graphs
e
W
Z
Z
W
Z

p
QW ~ 26%
e
p
QW ~ 3%
kloop ~ MW : pQCD
e
p
QW ~ 6%
QCD < kloop < MW :
non-perturbative
Box graphs, cont’d.
Protected by symmetry
W
W
2
ˆ  

GF 

(M
s
W ) 

MWW  
2 2  5 1 
2 2 4sˆ  
 

Short-distance correction: OPE
QWp(QCD) ~ -0.7%
QWp(QCD) ~ -0.08%
WW
ZZ
pQCD Corrections
OPE: s corrections
Integrand
 
 

b

e(K)[k   k   g k   i  b 5 ](1  5 )e(K)T (k)
Hadronic tensor
T (k)   d x e
4
ikx




p T J (0)J (x) p
Contract with k
k T (k)  i  d x e  (x0 ) p [J (0), J (x)] p 

4
ikx
Equal time commutator:
protected by SU(2)L symmetry



0
Soft terms
Box graphs, cont’d.
Z

+
Z
Long-distance physics:
not calculable

[
ˆ
GF 5
2
ˆ
MZ  
1  4s 

2 2 2
ln
]
2

M
 Z  C ()
 2  Z
Fortuitous suppression factor: box + crossed ~
b kJ JbZ ~ A
gv e =
(-1+4 sin2W)
Neutron b-decay
e
p
W
MW 

e
G F ˆ

2 2
[
ln
]
2

M
 Z  C ()
 2  W
n
|CW| < 2
to avoid exacerbating CKM
non-unitarity
|CZ| < 2
QWp < 1.5%
Higher Twist “Pollution”
~0.4%
Different
PDF fits
ALR Q2
y

E=11 GeV
0
=12.5
Sacco, R-M
preliminary
Higher Twist “Pollution”
Sacco & R-M
preliminary
FLD, HT
Castorina &
Mulders
Open issues
F2D, HT
• QCD evolution
• Double handbag
• Moment inversion
Interpretation & QCD Issues
• QCD effects in electroweak radiative corrections
not problematic for QWp, l2-decays, but more
of concern for neutron b-decay, (g-2)
Future study of CW, CZ on the lattice
• Form factors in Ke3 decays (Vus)
PT at O(p6)
• N Deep inelastic scattering
PDF’s: isospin, shadowing…
• Deep inelastic scattering
Higher twist
Conclusions
• Precision electroweak measurements below the Z-pole
can provide important clues about the structure of the
“new” Standard Model
Comparison of a variety of measurements is essential
• Charged current processes provide a window on the
mechanism of SUSY-breaking mediation at very high
energy scales
b-decay, l2-decays, -decay, Ke3-decay
• Neutral current measurements may allow one to test the
viability of SUSY dark matter
PV ep, ee, eA scattering, N deep inelastic scattering
• Theoretical control of QCD uncertainties is crucial
Future QCD-electroweak theory “synergy”
References






A. Kurylov, MR-M, & S. Su, Phys. Rev. D68: 035008 (2003)
A. Kurylov, J. Erler, & MR-M, Phys. Rev. D68: 016006 (2003)
A. Kurylov, MR-M, & S. Su, Nucl. Phys. B667, 321 (2003)
A. Kurylov, MR-M, & S. Su, Phys. Lett. B582, 222 (2003)
A. Kurylov & MR-M, Phys. Rev. Lett. 88: 071804 (2002)
MR-M, Phys. Rev. D 62: 056009 (2000)