Single heavy MSSM Higgs production at LC

Download Report

Transcript Single heavy MSSM Higgs production at LC

Search for New Physics beyond the SM
DOE Review 2006
Shufang Su • U. of Arizona
Data from sky: WMAP, supernovae, sky survey, …
Experiments
Low energy
Precision
measurement
LC
LEP
e+
S. Su
e-
LHC (2007)
Tevatron (now)
p
p
DOE Review, 2006
p
p
2
We live in a fascinating time when rich data is / will be available
My work focuses on searching for new physics beyond the SM
Involve experiments in
 Nuclear physics
 Particle physics
Dark Matter
 Astrophysics/Cosmology
Indirect
Searches
S. Su
DOE Review, 2006
Direct
Searches
3
Students and Postdoc
 Postdoc
 Hock-Seng Goh (3rd year)
 Grad Students
 Ethan Dolle (4th year)
 Xinyu Miao (3rd year)
 Undergrad Students
 Jessica Goodman
S. Su
DOE Review, 2006
4
Dark Matter Studies
S. Su
DOE Review, 2006
5
Dark Matter
 » 0.5%
 » 0.5%
=3%
=23% § 4%
=73% § 4%
 Remarkable agreement
 Remarkable precision (~10%)
S. Su
DOE Review, 2006
6
Research and Collaborations
 superWIMP Dark Matter
J. Feng (UC Irvine), F. Takayama (Cornell)
 SuperWIMP Cosmology and Collider Physics
Jonathan L. Feng, Arvind Rajaraman, Bryan T. Smith, Shufang Su, Fumihiro Takayama,
hep-ph/0410178.
 SuperWIMP Dark Matter in Supergravity with a Gravitino
Jonathan L. Feng, Shufang Su, Fumihiro Takayama, hep-ph/0410119.
 Supergravity with a Gravitino LSP
Jonathan L. Feng, Shufang Su, Fumihiro Takayama, Phys.Rev. D70 (2004) 075019.
 SuperWIMP Gravitino Dark Matter from Slepton and Sneutrino Decays
Jonathan L. Feng, Shufang Su, Fumihiro Takayama, Phys.Rev. D70 (2004) 063514.
S. Su
DOE Review, 2006
7
superWIMP
Thermal equilibrium
 
$ ffsuperWIMP
WIMP
WIMP
+ SM particles
Universe cools:
n=nEQe-m/T
FRT hep-ph/0302215, 0306024
104 s  t  108 s
Freeze out, n/s » const
SWIMP
SM
superWIMP
e.g. Gravitino LSP
LKK graviton
WIMP
106
S. Su
DOE Review, 2006
 neutral
 charged
8
Research and Collaborations
 Dark Matter Production at Colliders
J. Feng (UC Irvine), F. Takayama (Cornell)
 Minimum Rates for Dark Matter Production at the Large Hadron
Collider and International Linear Collider
Jonathan L. Feng, Shufang Su, Fumihiro Takayama, Phys. Rev. Lett. 96, 151802 (2006)
S. Su
DOE Review, 2006
10
Dark Matter Production at Colliders
DM
f
f
DM
Cross symmetry
f
DM
f
DM annihilation
 / 1/h  i
Not overclose universe

Efficient annihilation then
DM production
Efficient production at collider
Lower bound on rates
Upper bound on 
S. Su
DM
DOE Review, 2006
11
SuperWIMP with charged WIMP at LHC
Signal: two isolated charged tracks, large dE/dx
||  2.5,   0.7
S. Su
DOE Review, 2006
12
Research and Collaborations
 Dark matter of the left-right twin Higgs model
E. Dolle (UA), J. Goodman (U. of Arizona)
 Dark Matter of the Left-Right Twin Higgs Model
E. Dolle, J. Goodman, S. Su, in preparation.
300
S. Su
DOE Review, 2006
400
500
600
700
13
Indirect Searches for New Physics
S. Su
DOE Review, 2006
14
Research and Collaborations
 Low Energy Precision SUSY
A. Kurylov, M. Ramsey-Musolf, Sean Tulin (Caltech)
 Charged Current Universality Problem and NuTeV Anomaly: IS SUSY to
Blame?
Andriy Kurylov, Michael Ramsey-Musolf, Shufang Su, AIP Conf.Proc.698 (2004) 188.
 Probing Supersymmetry with Neutral Current Scattering Experiments
Andriy Kurylov, Michael Ramsey-Musolf, Shufang Su, AIP Conf.Proc.698 (2004) 168.
 Supersymmetric Effects in Parity Violating Deep Inelastic Electron
Nucleus Scattering
Andriy Kurylov, Michael Ramsey-Musolf, Shufang Su, Phys.Lett.B582:222-228,2004.
 Probing Supersymmetry with Parity Violating Electron Scattering
Andriy Kurylov, Michael Ramsey-Musolf, Shufang Su, Phys.Rev.D68:035008,2003.
S. Su
DOE Review, 2006
15
Research and Collaborations
 Low Energy Precision SUSY (cont’)
A. Kurylov, M. Ramsey-Musolf, Sean Tulin (Caltech)
 Supersymmetric Effects in Deep Inelastic Neutrino Nucleus Scattering
Andriy Kurylov, Michael Ramsey-Musolf, Shufang Su, Nucl.Phys.B667:321-348,2003 .
 SUSY Effects in Pion Decay
Michael Ramsey-Musolf, Shufang Su, Sean Tulin, in preparation.
S. Su
DOE Review, 2006
16
Møller Scattering
e
e
e
e
g
Q-Weak (JLab)
DIS-Parity
e
e
g Z
Z
g
Z
p
n
e
• Purely leptonic
• Coherent quarks in P
• Results in ~2009
• 2(2C1u+C1d)
Atomic Parity Violation
e
• Isoscaler quark scattering
• (2C1u-C1d)+Y(2C2u-C2d)
Neutrino Scattering
n
g
Z
• Coherent quarks in entire nucleus
• Nuclear structure uncertainties
• -376 C1u – 422 C1d
n
m
W
Cs133
S. Su
e
+
n
Z
• Quark scattering (from
nucleus)
• Weak charged and neutral
current difference
DOE Review, 2006
17
Test of sin2W Running
Weak mixing angle sinW
g sinW = g’ cosW = e
0.25
QWe
current
0.245
future
SM
0.24
Jlab Moller
Q W (p)
Qweak
SLAC E158
eD-DIS
n-DIS
Q W (e)
A FB
NuTeV
APV
0.235
Cs APV
Z-pole
0.23
DIS-parity
Standard Model Prediction
Erler, Kurylov & Ramsey-Musolf,
Phys. Rev. D 72, 073003 (2005)
0.225
S. Su
0.001
0.01
0.1
1
10
DOE Review, 2006
Q [GeV]
100
1000
18
Parity-Violating Electron Scattering
Kurylov, Ramsey-Musolf, Su (2003)
RPV 95% CL
No SUSY DM
MSSM
loop
4% Qweak
Future 2.5%
Moller
S. Su
DOE Review, 2006
19
Research and Collaborations
 Physics report review paper: Low Energy Precision Supersymmetry
Michael Ramsey-Musolf, Shufang Su, to appear.
 Introduction to supersymmetry
 Renormalization
 Z-pole precision measurements
 Neutral current studies
 Charge current studies
 Flavor physics, CP violation and baryongenesis
 Higgs searches
S. Su
DOE Review, 2006
20
Research and Collaborations
 Precision studies of MSSM
M. Ramsey-Musolf, Sean Tulin (Caltech)
 MSSM Contribution to Precision Observables
Michael Ramsey-Musolf, Shufang Su, Sean Tulin, in preparation.
 Precision Study of SUGRA, GMSB and AMSB
A. Dedes (Munich), S. Heinemeyer (CERN), G. Weiglein
(IPPP, Durham), X. Miao (UA)
 The Lightest Higgs Boson of mSUGRA, mGMSB and mAMSB at Present
and Future Colliders: Observability and Precision Analyses
Dedes, Sven Heinemeyer, X. Miao, Shufang Su, Georg Weiglein,Nucl.Phys.B674:271-305,2003.
 Distinguish SUSY Breaking Scenario in Precision Studies
Sven Heinemeyer, X. Miao, Shufang Su, Georg Weiglein, in preparation.
S. Su
DOE Review, 2006
21
Precision Study of SUGRA, GMSB and AMSB
GMSB @ ILC
S. Su
DOE Review, 2006
22
Direct Searches for New Physics
S. Su
DOE Review, 2006
23
Research and Collaborations
 Collider Study of the left-right twin Higgs Model
H.S. Goh (UA)
 Collider Phenomenology of the Left-Right Twin Higgs Model
Hock-Seng Goh, Shufang Su, hep-ph/0611015
 Collider Signatures of the Left-Right Twin Higgs Model
Hock-Seng Goh, Shufang Su, hep-ph/0608330
S. Su
DOE Review, 2006
24
LRTH: Parameters and Spectrum
 Model parameters: f1, (f2, y), , M, B, m
fixed by Higgs VEV
fixed by top quark mass
 Determine particle masses and interactions
S. Su
DOE Review, 2006
= 4f1 or 2f1
M=150 GeV
B=50 GeV
m = f1/2
25
Heavy Gauge Bosons
 Drell-Yan process
S. Su
DOE Review, 2006
26
ZH decay
 ZH
S. Su
DOE Review, 2006
27
Research and collaborations
 Collider Study of the Left-Right Twin Higgs Model (cont’)
 Heavy Top Quark of the Left-Right Twin Higgs Model
X. Miao, Shufang Su, in preparation.
3 b + 1 j + 1 lepton + missing ET
b
j
b

l
t
tH
W
b
S. Su
DOE Review, 2006
28
n
Research and collaborations
 Collider Study of left-right twin Higgs Model (cont’)
 Identify the Twin Higgs Mechanism at Colliders
Shufang Su, in preparation.
S. Su
DOE Review, 2006
29
Research and collaborations
 Distinguish New Physics at Colliders
 Left-Right Twin Higgs Model vs. Little Higgs Models
heavy top quark, heavy gauge bosons
 Left-Right Twin Higgs Model vs. Two-Higgs Doublet Models
extra Higgses
S. Su
DOE Review, 2006
30
Research and collaborations
 Neutralino LSP vs. Sneutrino LSP
C. P. Yuan (Michigan State U.)
Same signal, different interpretation
vs.
Can be studied at LHC by
S. Su
DOE Review, 2006
31
Research and Collaborations
 Propagation of High Energy Charged Slepton
M. H. Reno (U. IOWA), I. Sarcevic (UA)
 Propagation of Supersymmetric Charged Sleptons at High Energies
Mary H. Reno, Ina. Sarcevic, Shufang Su, Astropart. Phys. 24 (2005) 107.
S. Su
DOE Review, 2006
32
Long Lived Stau
Gravitino LSP
Stau NLSP
n
Albuquerque, Chacko
and Burdman (2003)
earth
n
earth
Msl=250 GeV
Mwino=250 GeV
Larger production rate
smaller production rate
 = 2.197£ 10-6 sec
c=659 meter
Larger effective detector volume
S. Su
DOE Review, 2006
33
Radiative Energy Loss: 
Crucial to determine the energy loss of the high energy
stau as it traverse the earth
 photonuclear
 bremstraahlung
 pair production
S. Su
DOE Review, 2006
34
radiative energy loss and stau range
Stau
lifetime
m=250 GeV
m=150 GeV
/ 1/m
/ 1/m2
S. Su
DOE Review, 2006
35
Activities
 Invited plenary talk at subZ workshop
 Neutral Current Overview
“From Zero to Z0”, May, 2004, Fermilab.
 Invited plenary talk at Aspen winter conference
 Gravitino dark matter
“The Highest Energy Physics”, February, 2005, Aspen, CO.
 Colloquium at University of Wisconsin, Madison
 Dark matter
May, 2005, Madison, WI.
 Invited lecture at Summer Institute 2005
 Dark Matters: WIMP and beyond
August, 2005, Fujiyoshida, Japan.
 Invited lecture at CCAST workshop
 Dark matter and collider physics
“LHC and Dark Matter”, Dec, 2005, Beijing, China.
 Invited talk at Jefferson Lab Hall C workshop
 Theory overview on neutral current measurements
S. Su
DOE Review, 2006
Aug, 2006, Jefferson Lab.
36
Organization of conferences/workshops
 From Zero to Z0, a workshop on precision electroweak physics
May, 2004, Fermilab
 Flavor physics workshop
Summer 2008, Kavli Institute in Beijing
S. Su
DOE Review, 2006
37
Future Directions
 LHC related physics: understand what data really means
 QCD issue
 Simulation tools for new physics and SM background
 Experimental physics observables/ capabilities …
 Detector
 Interplay between particle physics and cosmology
 Determine dark matter properties at colliders
 Direct and indirect dark matter detection
S. Su
DOE Review, 2006
38