Baryogenesis, EDMs, and The Higgs Boson

Download Report

Transcript Baryogenesis, EDMs, and The Higgs Boson

Baryogenesis, EDMs, and The
Higgs Boson
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
M.J. Ramsey-Musolf
Qui ckTime™ and a
TIF F (Unc ompress ed) dec ompress or
are needed to see t his pic ture.
Wisconsin-Madison
Baryogenesis
V. Cirigliano
C. Lee
S. Tulin
S. Profumo
G. Shaugnessy
Higgs Phenomenology
LANL
LBL
Caltech
UC Santa Cruz
Wisconsin
PRD 71: 075010 (2005)
PRD 73: 115009 (2006)
JHEP 0607:002 (2006 )
JHEP 0807:010 (2007)
V. Barger
P. Langacker
M. McCaskey
D. O’Connell
G. Shaugnessy
M. Wise
Wisconsin
IAS
Wisconsin
IAS
Wisconsin
Caltech
PRD 75: 037701 (2007)
arXiv: 0706.4311 hep-ph
What is the origin of baryonic matter ?
Cosmic Energy Budget
Dark Matter
Baryons
Dark Energy
What
are the
quantitative
implications
implications
of Higgs
searches
of new
Explaining
non-zero
rB requires
CP-violation
EDM
at LHC
and Higgs
for
explaining
atthose
ILC the
for
and
aexperiments
scalar
sectorstudies
beyond
of origin
the of
the
explaining
baryonic
thecomponent
baryon
asymmetry
of the
Universe
? set r?B=0)
Standard
Model
(assuming
inflation
Outline
I.
Baryogenesis: General Features
II.
Probing EW phase transition w/
Higgs boson phenomenology
III. Computing YB systematically:
progress & challenges
IV. Illustrative phenomenology in
MSSM: EDMs, DM, & Colliders
The Origin of Matter & Energy
Electroweak symmetry
breaking: Higgs ?
Leptogenesis: discover
the ingredients: LN- & CPviolation in neutrinos
Weak scale baryogenesis:
test experimentally: EDMs
& Higgs Boson Searches
Beyond the SM
Baryogenesis: When?
CPV? SUSY? Neutrinos?
?
SM symmetry (broken)
Cosmic Energy Budget
Baryogenesis: Myths
•
EW baryogenesis requires a light
SUSY Higgs boson (mH < 120 GeV)
•
EW baryogenesis requires SUSY
with a light RH stop
•
EDMs have nearly killed EW
baryogenesis
•
Leptogenesis is the most viable
option
Baryogenesis: Ingredients
Sakharov Criteria
Anomalous B-violating processes
• B violation
• C & CP violation
• Nonequilibrium
dynamics
Sakharov, 1967
Prevent washout by inverse processes
EW Baryogenesis: Standard Model
Weak Scale Baryogenesis
Anomalous Processes
• B violation
• C & CP violation
B
J
• Nonequilibrium
dynamics
qL

Sakharov, 1967
W


Kuzmin, Rubakov, Shaposhnikov
McLerran,…
A
W
Different vacua: D(B+L)= DNCS


Sphaleron Transitions
EW Baryogenesis: Standard Model
Shaposhnikov
J  s12 s13 s 23 c 12 c 13 c 23 sin 13
2
Weak Scale Baryogenesis
 (2.88  0 .33 )  10
4
4
2
2
• B violation
mt
• C & CP violation
MW MW MW MW
mb mc ms
4
• Nonequilibrium
dynamics
4
5
2
 3  10
2
13

F
F
1st order
2nd order

Sakharov, 1967



• CP-violation too weak
• EWPT too weak

Increasing mh


Baryogenesis: New Electroweak Physics
Unbroken phase
Weak Scale Baryogenesis
• B violation
Topological transitions
n e w
• C & CP violation
• Nonequilibrium
dynamics
(x)
Broken phase
CP Violation

1st order phase transition

Sakharov, 1967
n e w
• gIs it viable? 
e
• Can experiment
constrain it?

e
g
  can we compute it?
• How reliably


n e w




Z
Z
0


n e w
0



e



EDM Probes of New CP Violation
CKM
f
dSM
dfuture
 10
 40
 1.6  10
27
 10
 31
n
 10
 30
 3.0  10
26
 10
 29
Hg
 10
 33
 2.1  10
28
 10
 32

 10
 28
 1.1  10
18
 10
 24
e
199

dexp
Also 225Ra, 129Xe, d
If new EWK CP violation is responsible for abundance
of matter, will these experiments see an EDM?
Baryogenesis: New Electroweak Physics
90’s:
Weak Scale Baryogenesis
• B violation
Cohen, Kaplan, Nelson
Joyce, Prokopec, Turok
Unbroken phase
Topological transitions
n e w
• C & CP violation
• Nonequilibrium
dynamics
Broken phase
1st order phase transition

Sakharov, 1967
Theoretical
Issues:
Strength of phase transition (Higgs
sector) •Bubble
dynamics (numerical)
Is it viable?
Transport
at phase
boundary
(non-eq
• Can
experiment
constrain
it? QFT)
EDMs: many-body
physics
& QCD
• How reliably
can we
compute it?

(x)
Violation
More CP
Higgs?
Ando,Barger,

Langacker
,Profumo, R-M,
Shaugnessy, Tulin,
n e w
McCaskey
“Gentle” departure
from
n e w equilibrium &
scale hierarchy
n e w
Cirigliano,
Lee,
 
eR-M,Tulin

Baryogenesis: New Electroweak Physics
90’s:
Weak Scale Baryogenesis
• B violation
Cohen, Kaplan, Nelson
Joyce, Prokopec, Turok
Unbroken phase
Topological transitions
n e w
• C & CP violation
• Nonequilibrium
dynamics
(x)
Broken phase
More Higgs?
CP Violation
Ando,Barger,

Langacker,
McCaskey,O.Connell,
Profumo, R-M,
Shaugnessy,
n eTulin,
w
Wise
1st order phase transition

Sakharov, 1967
Theoretical
Issues:
Strength of phase transition (Higgs
sector) •Bubble
dynamics (expansion rate)
Is it viable?
Transport
at phase
boundary
(non-eq
• Can
experiment
constrain
it? QFT)
EDMs: many-body
physics
& QCD
• How reliably
can we
compute it?

n e w


n e w
e


Electroweak Phase Transition & Higgs
F
F
1st order
2nd order

LEP EWWG
Need


Increasing mh

Stop loops
in VEff


t˜


EMSSM ~ 10
 ESM ! mH
< 120 GeV

Light RH stop w/ special

So that Gsphaleron is not too fast
mh>114.4 GeV
ComputedorESM
! mGeV
~ 90
H < 40 GeV
(SUSY)
S

Electroweak Phase Transition & Higgs
e
e



Z
Z



F
sin2q

0

F
1st order

0
2nd order

LEP EWWG
Need


Increasing mH


Non-SU(2) Higgs (w / wo SUSY)
S


S
mh>114.4 GeV
S


Decay


So that Gsphaleron is not too fast
Mixing

ComputedorESM
! mGeV
~ 90
H < 40 GeV
(SUSY)
Reduced SM Higgs branching ratios
Electroweak Phase Transition & Higgs
B.R.
reduction
F
F
1st order
2nd order
LEP EWWG
mH
Unusual final states


S



Increasing
m
 H


b
S


Need
b






O’Connell,
  R-M, Wise
 (w / wo SUSY)
Non-SU(2) Higgs
S


S
mh>114.4 GeV
S


Decay


So that Gsphaleron is not too fast
Mixing

ComputedorESM
! mGeV
~ 90
H < 40 GeV
(SUSY)
Extending the Higgs Sector
SUSY Beyond the MSSM
+L
Ando, Barger, Langacker, Profumo,
R-M, Shaugnessy, Tulin
soft
GUTs: SU(5) example
S0 ,S,S
Fileviez Perez, Patel, R-M
The Simplest Extension
Model
Simplest extension of the SM scalar
sector: add one real scalar S
H-S Mixing • Goal: identify generic features of
H1!H2H2
models with extended
scalar sectors that give a
strong, 1st order EWPT
• Determine low-energy
phenomenology (Higgs
studies, precisionIndependent
ewk)
Parameters:
v 0 , x 0 ,  0 , a1 , a 2 , b3 , b4
• Address CPV with a different
mechanism
The Simplest Extension, Cont’d
Mass matrix
  2
2
h
M   2
 hs 2
h1  sin q
   
h 2  cos q


 hs 2 
2

2
s


cos q h 
 
 sin q s 
Stable S (dark matter?)
• Tree-level Z2 symmetry: a1=b3=0 to
prevent s-h mixing and one-loop s
hh
• x0 =0 to prevent h-s mixing
Finite Temperature Potential
F• What is the pattern of
F
symmetry breaking ?

• What are conditions on the
couplings in V(H,S) so that
<H0>/T > 1 at TC ?

S
H
0


• Compute Veff ( ,,T )


Cylindrical Co-ordinates



• Minimize w.r.t ,

• Find TC
• Evaluate v(TC )/TC ~
cos (TC) (TC )/TC
Symmetry Breaking
F
F


S
H
0





Two Cases for
 high T:
 <S>at
Vmin = 0
Vmin = V0 < 0

Electroweak Symmetry Breaking
Critical Temperature
LEP allowed models: TC ~ 100 GeV
|V0| / TC4 << 1
Electroweak Symmetry Breaking
Strong first order EWPT
Increase e
Large e < 0
Reduce 
S
e
Potential parameters
e





Small c limit
h2
h1
h2



Nonzero V0

Z

0
Z


0
Electroweak Symmetry Breaking
S
Strong first order EWPT
e
e


Z


0
Z



0


h2
h1
h2



Light: all models
Black: LEP allowed
a1<0, a2 either sign
a1=b3= 0, a2 < 0
x0 > 0
occurs
readily
Phenomenology: EWPO
Electroweak Precision Observables (EWPO)
SM: global fit
favors light scalar
(mh~ 85 GeV)
Oblique parameters
Similar for S,U…
Phenomenology: EWPO cont’d
Electroweak Precision Observables (EWPO)
• Fix mH=114 GeV & fit S,T,U
• Require
O(m1 , m2 , sinq ) - OSM
to lie inside 95% CL ellipse
Oblique parameters
Global fit (GAPP)
Phenomenology
ILC: H’strahlung
Colliders
m2 > 2 m1
LHC exotic final
states: 4b-jets,
 + 2 b-jets…
b
h
LHC:
reduced
h
BR(h
SM)h
1
2
1



b

m1 > 2 m2




EWPO: favors
light SM-like
scalar
EWPO
compatible
Phenomenology
Colliders
Z2 Symmetry
m1 > 2 m2
LHC: reduced
BR(h
SM)
h2
h1
h2


Small q:
LHC Phenomenology
Discovery Potential
Barger, Langacker, McCaskey,
R-M, Shaughnessy
LHC Higgs Searches
CMS & ATLAS: gg!H,
H!,H!ZZ!llll
H!WW!lnln
CMS :
WW!H,
H!,H!tt!l + j
H!WW!lnjj
ATLAS :
gg!H,
H!ZZ!ll nn,
Higgstrahlung
CMS 30 fb-1
LHC Phenomenology
Barger, Langacker, McCaskey,
R-M, Shaughnessy
Discovery Potential
SM-like
SM-like
Singlet-like
SM-like w/
H2!H1H1 or
Singlet-like
~ EWB Viable
Could discovery
heavy H2
CMS 30 fb-1
ILC Phenomenology
Colliders: e+e-
Z*h
S
e
e






Z
sin2q

0
Z


(also WWF, ZZF)
0
Scalar Sector & the EWPT
•
Simple extensions of the SM scalar sector
(xSM) w/ small number of d.o.f. can readily
lead to a strong, 1st order EWPT as needed
for EW baryogenesis No need for light RH stop
•
EWPT viable xSM can allow for heavier SMlike Higgs consistent with EWPO
•
EWPT xSM can readily probed at the LHC and
ILC using Higgs boson searches
•
One can obtain an analytic criteria for
parameters of xSM needed for 1st order
EWPT that provides guidance for specific
model realizations
Baryogenesis: New Electroweak Physics
90’s:
Weak Scale Baryogenesis
• B violation
Cohen, Kaplan, Nelson
Joyce, Prokopec, Turok
Unbroken phase
Topological transitions
n e w
• C & CP violation
• Nonequilibrium
dynamics
(x)
Broken phase
1st order phase transition

Sakharov, 1967
Theoretical
Issues:
Strength of phase transition (Higgs
sector) •Bubble
dynamics (expansion rate)
Is it viable?
Transport
at phase
boundary
(non-eq
• Can
experiment
constrain
it? QFT)
EDMs: many-body
physics
& QCD
• How reliably
can we
compute it?

CP Violation

n e w
“Gentle” departure
equilibrium &
from
ne w
scale hierarchy
Lee,
Cirigliano,
ne w
  R-M,Tulin

e

Systematic Baryogenesis
Goal: Derive dependence of YB on parameters
Lnew systematically (controlled approximations)
Parameters in Lnew
CPV phases
Bubble & PT
dynamics
Departure from equilibrium
• Earliest work: QM scattering & stat mech
• New developments: non-equilibrium QFT
Baryogenesis: Better Theory ?
Non-equilibrium quantum transport
RHIC
Violent departure
from equilibrium
Electroweak Baryogenesis
n e w
(x)
“Gentle” departure from
equilibrium & scale hierarchy
Systematic treatment of transport
with controlled approximations
using non-equilibrium QFT
Cirigliano, Lee, R-M, Tulin
Quantum Transport & Baryogenesis
Electroweak Baryogenesis
n e w


(x)
1.
Evolution is non-adiabatic:
vwall > 0 !decoherence
2.
Spectrum is degenerate:
T > 0 ! Quasiparticles mix
Density is non-zero
3.

ParticlePropagation:
Beyond familiar (Peskin) QFT
0
LI
IN
Assumptions:
1.
2.
3.
Evolution is adiabatic

Spectrum is non-degenerate
Density is zero
0
OUT
Quantum Transport & Baryogenesis
Electroweak Baryogenesis
n e w
(x)
1.
Competing
Evolution
Dynamics
is non-adiabatic:
vwall > 0 !decoherence
CPV
2. Spectrum is degenerate:
T > 0 ! Quasiparticles mix
Ch
eq
3. Density is non-zero
Cirigliano, Lee,Tulin, R-M


Scale Hierarchy:
Fast, but not too fast
Systematically derive
transport eq’s from Lnew
ed = vw (k / w)<< 1
Hot, but not too hot
ep = Gp / w<< 1
Dense, but not too dense
e = / T << 1
Work to lowest, nontrivial order in e’s
Error is O (e) ~ 0.1
Cirigliano, Lee, R-M
Quantum Transport Equations
˜
S
 j Approximations
  d  dz 0 S G( X , z) G G˜(z, X )  G ( X , z) S (z, X )  + …


X
( GX˜ )
3
=
• Neglect

0
zG˜

O(e3)

X0

˜
+
0
terms


• Others under scrutiny
R-M, Chung, Tulin,
Garbrecht, Lee,
Cirigliano

0
+

From S-D Equations:
Expand
in ed,p,
• SCPV
Chiral
Producing
Relaxation
Riotto,
CarenanLet=al,0R-M et al,
Konstandin et al
• SCPV
• G M , GH , GY …
R-M et al
• GY!1? (No)
• Majorana fermions ?
(densities decouple)
• Particle-sparticle eq?
• Density indep thermal
widths?
Currents

Strong
sphalerons
Objectives:
• GM , GH , GY , GSS
• Determine param dep of SCPV
and all Gs and not just that of SCPV
• Develop general
methods for any
CP violating
model with new CPV
Links CP violation in Higgs
sources
and baryon sectors • Quantify theor uncertainties
Illustrative Study: MSSM
Chargino Mass Matrix
CPV
M2
MC =
mW
ne w
mW
2 sin b
background field
2 cos b


Neutralino Mass Matrix

T << TEW : mixing
~ ~
~0
of H,W to c~,c
q , W˜ , B˜ , H˜ u , d
M1
MN =
T ~TEWT: ~
scattering
TEW
~ ~
of(x)
H,W from
0
Resonant CPV:
M1,2 ~ 
0
-mZ cos bsin qW
mZ cos bcos qW
M2
mZ sin bsin qW
-mZ sin bsin qW
-mZ cos bsin qW
mZ cos bcos qW
0
-
mZ sin bsin qW
-mZ sin bsin qW
-
0

Baryon Number: MSSM
rB
YB 

s
CPV
F1 
S H˜
 F1 sin    F 2 sin(     A )
GW S
G G diff
Higgsinos

CPV
F2 
Impt to compute
bothnum and den
consistently
S t˜
GW S
G G diff
Squarks
Baryogenesis: New Electroweak Physics
90’s:
Weak Scale Baryogenesis
• B violation
Cohen, Kaplan, Nelson
Joyce, Prokopec, Turok
Unbroken phase
Topological transitions
n e w
• C & CP violation
• Nonequilibrium
dynamics
(x)
Broken phase
1st order phase transition

Sakharov, 1967
Theoretical Issues:
Strength of phase transition (Higgs
sector) •Bubble
dynamics (expansion rate)
Is it viable?
Transport
at phase
boundary
(non-eq
• Can
experiment
constrain
it? QFT)
EDMs: many-body
physics
& QCD
• How reliably
can we
compute it?

CP Violation

Elementary particle
EDMs: N!1
n e w
Many-body EDMs:
n e w
Engel,Flambaum,
Haxton, Henley,
n e w R-M
Khriplovich,Liu,

e


EDMs in SUSY
One-loop
f˜

˜0
c

q˜
˜0
c
f˜

f

g
q˜


q

 q, l, n…
EDM:


 
Chromo-EDM:
q, n…


Dominant in
 & atoms
nuclei
EDMs & Baryogenesis
f˜
q˜
˜
c
0
˜
c
g
q˜


f˜

q
n e w

0





f


(x)
q , W˜ , B˜ , H˜ u , d



Future
de dn dA
Cirigliano, Lee,
Tulin, R-M
Resonant
Non-resonant
T ~ TEW
EDMs in SUSY
Decouple in large
One-loop
f˜

q˜

˜0
c
limit
˜0
c
f˜

f

g


q˜
q

 q, l, n…
EDM:


 
Chromo-EDM:
q, n…


Dominant in
 & atoms
nuclei
Two-loop
g

EDM only: no chromo-EDM
g

g
Weinberg: small matrix el’s

EDM constraints & SUSY CPV
One-loop de & slepton mass
BBN
Heavier sleptons: weaker
one-loop EDM constraints &
less resonant baryogenesis
EDM constraints & SUSY CPV
One-loop vs. Two-loop EDMs
e˜
c
0
e˜

e



de1 loop ~ de2 loop
EDM constraints & SUSY CPV
Baryogenesis
LEP II Exclusion
| sin  | > 0.02
| de , dn | > 10-28 e-cm
Mc < 1 TeV
Two loop de
Cirigliano,
Profumo, R-M
SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2
SUSY Baryogenesis & Colliders
LHC reach
ILC reach
Present de
Prospective de
Summary
•
EW baryogenesis remains a viable and testable
mechanism for producing the observed baryon
asymmetry
•
Extensions of the Higgs sector of the SM can
readily yield a strong 1st order EWPT, and these
extensions can be probed at LHC and ILC
•
We’ve made progress in computing YB
systematically, but challenges remain: no one’s
(yet) perfect !
•
EDM searches provide our most powerful
probe of new EW CPV needed for YB
Back Matter
EDM constraints & SUSY CPV
Neutralino-driven
baryogenesis
Baryogenesis
LEP II Exclusion
Two loop de
Cirigliano,
Profumo, R-M
SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2
Relic Abundance of SUSY DM
T << TEW : mixing
~ ~
~0
of H,W to c~,c
Neutralino Mass Matrix
M1
MN =
0
0
-mZ cos bsin qW
mZ cos bcos qW
M2
mZ sin bsin qW
-mZ sin bsin qW
-mZ cos bsin qW
mZ cos bcos qW
0
-
mZ sin bsin qW
-mZ sin bsin qW
-
0
cN11B 0N12W 0N13Hd0N14Hu0
BINO
˜1
c
0
t
t˜

˜1
c
0

WINO
HIGGSINO
c~1
0
c~ i , c~ j

0
+ res
c~1
0
t
W ,Z
+ coannihilation
W ,Z
Dark Matter: Relic Abundance
˜ 10
c
t˜
suppressed
˜ 10
c

Neutralino-driven
baryogenesis
t
t




LEP II Exclusion
c~1
0
W ,Z
c~ i , c~ j

0
0
c~
1
too fast
Non-thermal c0
W ,Z
SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2
Dark Matter: Future Experiments
Assumes
Wc ~WCDM
Cirigliano,
Profumo, R-M
Extending the Higgs Sector: SUSY
+L
soft
Implications
• Strong 1st order EWPT w/o light stop
• New sources of CPV & relaxation
• Light singlet Higgs
• Singlino CDM….
Ando,Barger,
Langacker
,Profumo, R-M,
Shaugnessy, Tulin
Extending the Higgs Sector: GUTs
SU(5) w/ extended Higgs sector
S0 ,S,S
Implications
• Strong 1st order EWPT w/o SUSY ?
• New sources of CPV?
• Light triplet Higgs
• Light leptoquarks (unification)
Perez, Patel, R-M
LHC Phenomenology, cont’d
Determining x
Barger, Langacker, McKaskey, RM, Shaughnessy
Enhanced gHVV coupling
needed for 5sobservation
SM-like
~ EWB Viable
SM-like w/
H2!H1H1 or
Singlet-like
Leptogenesis
Early universe
Key Ingredients
Present universe
• Heavy nR
1
Y
• mnspectrum
• CP violation
Leptogenesis

• L violation
b-decay, 0nbbdecay, q13
1
S

Weak scale
log 10 (  /  0 )
Planck scale
Baryogenesis: Ingredients
Present universe
Early universe
Sakharov Criteria
• B violation
• C & CP violation
1
Y

• Nonequilibrium
dynamics
Sakharov, 1967
1
L
1


Weak scale
baryogenesis can be
tested experimentally
S
?
?
log 10 (  /  0 )
Weak scale
Planck scale
What is the origin of baryonic matter ?
Cosmic Energy Budget
Dark Matter
g

g
e


Baryons



d  dS

gg fusion at LHC
e
E
Z
n EDM  
dSE
h
0
Z
0


Higgsstrahlung
at
a linear collider
Dark Energy

T-odd , CP-odd by
CPT theorem
What
are the
quantitative
implications
implications
of Higgs
searches
of new
Explaining
non-zero
rB requires
CP-violation
EDM
at LHC
and Higgs
for
explaining
atthose
ILC the
for
and
aexperiments
scalar
sectorstudies
beyond
of origin
the of
the
explaining
baryonic
thecomponent
baryon
asymmetry
of the
Universe
? set r?B=0)
Standard
Model
(assuming
inflation