W-band InP/InGaAs/InP DHBT MMIC Power Amplifiers Yun Wei, Sangmin Lee, Sundararajan Krishnan, Mattias Dahlström, Miguel Urteaga, Mark Rodwell Department of Electrical and Computer Engineering, University.

Download Report

Transcript W-band InP/InGaAs/InP DHBT MMIC Power Amplifiers Yun Wei, Sangmin Lee, Sundararajan Krishnan, Mattias Dahlström, Miguel Urteaga, Mark Rodwell Department of Electrical and Computer Engineering, University.

W-band InP/InGaAs/InP
DHBT MMIC Power Amplifiers
Yun Wei, Sangmin Lee, Sundararajan Krishnan,
Mattias Dahlström, Miguel Urteaga, Mark Rodwell
Department of Electrical and Computer Engineering,
University of California
[email protected] tel: 805-893-8044, fax 805-893-3262
IMS2002
W-band MIMIC Power Amplifiers
Y.C.Chen et. Al. IPRM, May 1999
2-stage 94 GHz W-band HEMT power amplifier
0.15 m composite-channel InP HEMT
Imax=750mA, VBR=7V, Pout= 316 mW
J. Guthrie et. Al, IPRM, May 2000
Cascode 78 GHz HBT power amplifier
transferred substrate InGaAs/InAlAs SHBT
Imax=100mA, VBR=2.5V, Pout= 12 mW
This work
single stage W-band HBT power amplifiers
transferred substrate InP/InGaAs/InP DHBT
Imax=128mA, VBR=7V, Pout= 40 mW
Highest reported power for W-band HBT power amplifier
Transferred-Substrate HBT MMIC technology
HBT processing
•Normal emitter and base processing
 no collector contact
• polyimide isolation, SiN insulation,
interconnection metals (M1 and M2),
Benzocyclobutene planarization, thermal via
and ground plane plating
•Flip chip bounding to carrier
•Substrate etching
•Schottky contact collector
simultaneous scaling of emitter and
collector widths  f max  f / 8RbbCcb
Wiring environment
•Micro strip transmission line
 BCB dielectric, r=2.7, t=5 m
•MIM capacitorsBCB bypass capacitor, SiN
capacitor (r=7, t=0.4 m )
•NiCr resistor  R=40/


Low via inductance, reduced fringing
fields, increased conductor losses
MBE DHBT layer structure
InGaAs 1E19 Si 500 Å
substrate
Buffer layer 2500 Å
collector
Grade 1E16 Si 480 Å
InP 2E18 Si 20 Å
InP 1E16 Si 2500 Å
Multiple stop etch layers
base
Grade 2E18 Be 67 Å
InGaAs 4E19 Be 400 Å
Band profile at Vbe=0.7 V, Vce=1.5 V
emitter
Grade 1E19 Si 200 Å
InP 1E19 Si 900 Å
InP 8E17 Si 300 Å
Grade 8E17 Si 233 Å
400 Å InGaAs base
3000 Å InP collector
0.5 m Transferred-Substrate DHBT UCSB
Sangmin Lee
40
fmax = 462 GHz,
f = 139 GHz
Gains (dB)
30
U
20
343
395
10
h21
139
462
0
1
10
100
1000
Frequency (GHz)
BVCEO = 8 V at JE =0.4 mA/m2
Vce(sat) ~1 V at 1.8 mA/m2
6.0
2.0
5.0
Ic(mA)
Ic(mA)
4.0
3.0
1.0
2.0
1.0
0.0
0.0
0
0.5
1
1.5
Vce(V)
2
2.5
3
0
1
2
3
4
5
Vce(V)
6
7
8
9
ARO
MURI
Multi-finger DHBTs: Design Challenges
UCSB
Thermal instability (current hogging) in multi-finger DHBTs:
contact
SiN
emitter
base
poly
collector
BCB
Metal strip
Ic
Ic
Temperature
Temperature
BCB
Au Via
Steady state current and temperature
distribution when thermally stable
Thermal instability further increases
current non-uniformity
 JAVce
  dVbe 
Stability factor K  
 1 to ensure uniform current distributi on

dT
R

R

kT
/
qI

 ex
ballast
E
Distributed base feed resistance:
Self-aligned base contact
thickness=0.08 m
base feed sheet resistance:
s=0.3 /•
Metal1
significant for > 8 um emitter
finger length
Emitter contact
0.08 m
Base contact
Large Area HBTs:
big Ccb, small Rbb,
even small excess Rbb
substantially reduces fmax
ARO MURI
UCSB
Large Current High Breakdown Voltage
Broadband InP DHBT
2nd-level base feed metal
8-finger device
8 x ( 1 m x 16 m emitter )
8 x ( 2 m x 20 m collector )
emitter
7 m emitter spacing
~8 Ohm ballast
per emitter finger
Flip chip
fmax>330 GHz,
Vbrceo>7 V,
Jmax>1x105 A/cm2
collector
Ballast resistor
30
140
A =128 um
120
25
U, MSG/MAG, dB
14
12
10
80
Ic, m A
Ic, mA
100
60
8
6
4
40
2
0
-1
20
AE=128um2
2
E
IC=100mA
20
15
Vcb=2.9V
MSG/MAG
U
10
5
0
1
2
3
4
5
6
fmax=330 GHz
7
Vcb, V
0
0
2
4
Vcb, V
6
8
10
0 0
10
10
1
10
2
Frequency, GHz
10
3
ARO
MURI
UCSB
InP TS DHBT Power Amplifier Design
• Designed using large signal model derived from
DC-50 and 75-110 GHz measurements of previous
generation devices
Imax
0.018
0.016
0.014
• Shunt R-C network at output provides low
frequency stabilization
• Electromagnetic simulator (Agilent’s Momentum)
was used to characterize passive elements
0.012
Ic (A)
• Output tuning network loads the HBT in the
optimum admittance for saturated output power
0.010
0.008
0.006
0.004
0.002
Low frequency
stabilization
Vsat
0.000
0.0
0.5
1.0
1.5
2.0
VCE_BR
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
Vce (V)
Input match
Optimum admittance
match
7.0
ARO
MURI
UCSB
W band 128 m2 power amplifier
common base PA
0.5mm x 0.4 mm, AE=128 m2
Bias: Ic=78 mA, Vce=3.6 V
20
10
10
S21
GT
5
8
10
6
5
4
0
2
S11
-15
T
-10
-20
-25
-30
80
90
frequency, GHz
100
110
G , dB
-5
Pout, dBm
S22
0
S11, S21, S22
Pout
15
-5
0
-15
-10
-5
0
5
10
Pin, dBm
f0=85 GHz, BW3dB=28 GHz,GT=8.5 dB, P1dB=14.5 dBm, Psat=16dBm
15
ARO
MURI
UCSB
W band 64 m2 power amplifier
cascode PA
bias
0.5mm x 0.4 mm, AE=64 m2
Bias condition: Ic=40 mA, Vce_CB=3.5 V, Vce_CE=1.5 V
15
15
S21
GT
5
Pout
8
Pout, dBm
10
0
-5
S22
-10
-15
6
GT, dB
S11, S21, S22, dB
10
5
4
0
2
S11
-20
-25
10
80
90
100
frequency, GHz
110
-5
-15
-10
-5
0
5
Pin, dBm
f0=90 GHz, BW3dB=20 GHz, GT=8.2 dB, P1dB=9.5 dBm, Psat=12.5 dBm
0
10
IMS2002
Conclusions
UCSB
• Wideband Power DHBT: Ic= 100 mA, Vce=3.6 V, fmax=330 GHz
thermal design and base feed design critical for wide bandwidth
• Power DHBT large signal modeling
• Wideband Power amplifiers: f0=85 GHz, BW3dB=28 GHz,GT=8.5 dB, Psat=16dBm
Future work
• Higher power DHBTs: lumped 4-finger topology and longer emitter finger
• Multi-stage wideband power amplifiers
• ~200 GHz power amplifiers
Acknowledgement
Work funded by ARO-MURI program under contract number PC249806.