40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of Electrical and Computer Engineering, University of.
Download ReportTranscript 40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of Electrical and Computer Engineering, University of.
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of Electrical and Computer Engineering, University of California [email protected] tel: 805-893-8044, fax 805-893-3262 LEC 2002 • • • • • Outline UCSB Introduction Transferred-Substrate Power DHBT Technology Circuit Design Results Conclusion LEC 2002 • Introduction Applications for power amplifiers in Ka band satellite communication systems wireless LANs local multipoint distribution system personal communications network links and digital radio • MMIC Amplifiers in this frequency band Kwon et. al., IEEE MTT, Vol.48, No. 6, June. 2000 3 stage HEMT, class AB, Pout=1 W, Gain=15 dB, PAE=28.5%, size=9.5 mm2 • This Work: Single stage cascode InP DHBT, class A, Pout=50 mW, Gain=7 dB, PAE=12.5% size=0.42 mm2 Transferred-Substrate HBT MMIC fabrication MBE DHBT layer structure InGaAs 1E19 Si 500 Å collector substrate Grade 1E16 Si 480 Å InP 2E18 Si 20 Å InP 1E16 Si 2500 Å Multiple stop etch layers Buffer layer 2500 Å base Grade 2E18 Be 67 Å InGaAs 4E19 Be 400 Å Band profile at Vbe=0.7 V, Vce=1.5 V emitter Grade 1E19 Si 200 Å InP 1E19 Si 900 Å InP 8E17 Si 300 Å Grade 8E17 Si 233 Å 400 Å InGaAs base 3000 Å InP collector Small-area T.S. DHBTs have high cutoff frequencies. 40 Sangmin Lee fmax = 462 GHz, ft = 139 GHz 30 Gains (dB) UCSB U 20 343 395 10 h21 139 462 0 1 10 100 1000 Frequency (GHz) BVCEO = 8 V at JE =0.4 mA/m2 Vce(sat) ~1 V at 1.8 mA/m2 6.0 3.0 5.0 2.0 Ic(mA) Ic(mA) 4.0 3.0 2.0 1.0 1.0 0.0 0.0 0 0.5 1 1.5 Vce(V) 2 2.5 3 0 1 2 3 4 5 Vce(V) 6 7 8 9 ARO MURI Design difficulties with large-area power DHBTs Assume init ial temperat re u differenceT between 2 fingers Current dVbe hogging in multi-finger DHBT: 1.1 mV/K at const antI c dT Ic Ic dV 1 T Vbe be T I C Vbe dT Rex Rballast kT / qIE Temperature Temperature UCSB Yun Wei contact SiN emitter base poly collector P VCE I C T JAP BCB Metal strip BCB Au Via Initial current temperature Steady stateand current and temperature distribution distribution when thermally stable Unst ableunless K thermalstability Thermal instability further increases current non-uniformity thermal feedback further increases current non-uniformity dVbe VCE JA K<1 for thermal stability 1 dT Rex Rballast kT / qIE → must add emitter ballast resistance Distributed base feed resistance: base feed sheet resistance: s= 0.3 /• Metal1 Emitter contact significant for > 8 um emitter finger length 0.08 m Base contact Large Area HBTs: big Ccb, small Rbb, even small excess Rbb substantially reduces fmax ARO MURI UCSB First Attempt at Multi-finger DHBTs: Poor Performance Due to Thermal Instability Yun Wei thermally driven current instability collapse 120 25 I , mA 100 c 80 b 15 10 60 5 40 0 c I , mA I step = 300 A 20 0 I step = 380 A 20 1 2 3 4 V , Volts 5 6 ce b 0 0 1 2 3 V , Volts 4 5 ce 25 Jc=5e4 A/cm2 Vce=1.5 V 8 finger common emitter DHBT Emitter size: 16 um x 1 um Ballast resistor (design):9 Ohm/finger low fmax due to premature Kirk effect (current hogging) excess base feed resistance Gains, dB 20 U 15 H 21 10 f =120 GHz max 5 f =91 GHz 0 10 10 Frequency, Hz 10 11 ARO MURI UCSB Large Current High Breakdown Voltage Broadband InP DHBT 2nd-level base feed metal 8 -finger DHBT 8 x (1 m x 16 m emitter ) 8 x (2 m x 20 m collector ) Yun Wei emitter Key Improvements 8 Ohm ballast per emitter finger 2nd-level base feed metal Flip chip Device Performance fmax>330 GHz, Vbrceo>7 V, Jmax>1x105 A/cm2 100 mA, 3.6 Volt device collector Ballast resistor 30 140 A =128 um 120 25 U, MSG/MAG, dB 14 12 10 80 Ic, m A Ic, mA 100 60 8 6 4 40 2 0 -1 20 AE=128um2 2 E IC=100mA 20 15 Vcb=2.9V MSG/MAG U 10 5 0 1 2 3 4 5 6 fmax=330 GHz 7 Vcb, V 0 0 2 4 Vcb, V 6 8 10 0 0 10 10 1 10 2 Frequency, GHz 10 3 ARO MURI UCSB HBT power amplifier-why cascode? Advantages: common-base stage has large Vce → large output power common-emitter-stage has low Vce → small Rballast required → maintains large available power gain bias 2 Disadvantage inductance of base bypass capacitor even small L greatly degrades gain IB1 bias 1 Yun Wei bias 3 common base + Vce2 IE2 stage mesa + common emitter I Vce1 E1 stage mesa - Rballast radial stub capacitor * R. Ramachandran and A.F. Podell "Segmented cascode HBT for microwave-frequency power amplifiers" ARO MURI UCSB InP TS DHBT Power Amplifier Design Yun Wei Imax 0.018 0.016 0.014 Ic (A) 0.012 0.010 0.008 0.006 0.004 0.002 Vsat VCE_BR 0.000 4 parallel cascode amplifier /4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Vce (V) Optimum admittance match /4 Input match Low frequency stabilization 4 parallel cascode amplifier 8 finger cascode Inter-stage DC bias 4.5 5.0 5.5 6.0 6.5 7.0 ARO MURI UCSB 40 GHz 128 m2 power amplifier Yun Wei cascode PA f0=40 GHz BW3dB=16 GHz GT=7 dB P1dB=14 dBm Psat=17 dBm @ 4dB gain 0.6mm x 0.7 mm, AE=128 m2 14 20 10 S21 12 0 -10 S11 10 T Sij, dB S22 -20 -30 Pout 10 PAE G T 6 5 4 0 -40 20 25 30 35 Frequency, GHz 40 45 8 -5 -15 2 -10 -5 0 Pin, dBm 5 10 0 15 PAE, % Pout, G , dBm 15 W band power amplifiers in TS InP DHBT technology ARO MURI UCSB Yun Wei common base PA Bias: Ic=78 mA, Vce=3.6 V f0=85 GHz BW3dB=28 GHz GT=8.5 dB P1dB=14.5 dBm Psat=16dBm, associated gain: 4.5 dB 0.5mm x 0.4 mm, AE=128 m2 20 10 10 S21 GT 5 8 10 6 5 4 0 2 S11 -15 T -10 -20 -25 -30 80 90 100 110 frequency, GHz Y. Wei et al, 2002 IEEE MTT-S symposium G , dB -5 Pout, dBm S22 0 S11, S21, S22 Pout 15 -5 0 -15 -10 -5 0 Pin, dBm 5 10 15 W band power amplifiers in TS InP DHBT technology ARO MURI UCSB Yun Wei cascode PA Bias: Ic=40 mA, Vce=3.5 V f0=90 GHz BW3dB=20 GHz GT=8.2 dB P1dB=9.5 dBm Psat=12.5 dBm, associated gain: 4 dB 0.5mm x 0.4 mm, AE=64 m2 15 15 S21 GT 5 Pout 8 Pout, dBm 10 0 -5 S22 -10 -15 6 GT, dB S11, S21, S22, dB 10 5 4 0 2 S11 -20 -25 10 80 90 100 110 frequency, GHz Y. Wei et al, 2002 IEEE MTT-S symposium -5 -15 -10 -5 0 Pin, dBm 5 0 10 LEC 2002 Continuing work Higher-current DHBTs for increased mm-wave output power 250 GHz fmax, Ic,max=240 mA, thermally stable at 200 mA bias at Vce=3.2 Volts → suitable for W-band ~150 mW power amplifiers W-band DHBT power amplifiers designs for > 100 mW saturated output power now being tested Results to be reported subsequently… UCSB Yun Wei LEC 2002 Conclusions • 40 GHz MMIC power amplifier in InP DHBT technology 7 dB power gain and 14 dBm output power at 1 dB compression. 17 dBm (50 mW) saturated output power 12.5% peak power added efficiency Future work: higher power DHBT power amplifiers at W-band and above lumped 4-finger topology, longer emitter fingers, power combining G-band (140-220 GHz) DHBT power amplifiers Acknowledgement Work funded by ARO-MURI program under contract number PC249806. UCSB Yun Wei