75 GHz 80 mW InP DHBT Power Amplifier Y. Wei, M.

Download Report

Transcript 75 GHz 80 mW InP DHBT Power Amplifier Y. Wei, M.

75 GHz 80 mW InP DHBT Power Amplifier
Y. Wei, M. Urteaga, Z. Griffith, D. Scott, S. Xie,
V. Paidi, N. Parthasarathy, M. Rodwell.
Department of Electrical and Computer Engineering,
University of California, Santa Barbara
[email protected] 1-805-893-8044
IMS2003 June 2003, Philadelphia, PA
IMS2003
W-band MMIC power Amplifiers
UCSB
Applications for electronics in 75-110 GHz frequency band
Wideband communication systems, Atmospheric sensing, Automotive radar
2 stage 94 GHz 0.15 m InP HEMT power amplifier: Pout= 316 mW
Y.C.Chen et. Al. IPRM, May 1999
Cascode 78 GHz InAlAs SHBT power amplifier: Pout= 12 mW
J. Guthrie et. Al, IPRM, May 2000
Single stage 85 GHz InP DHBT power amplifiers: Pout= 40 mW
Y. Wei et. Al, IMS, June 2002
This work
Single stage 75 GHz HBT power amplifiers: Pout= 80 mW
Transferred substrate InP/InGaAs/InP DHBT
Highest Reported Power for HBTs in W-band
Yun Wei
IMS2003
Transferred substrate HBT
technology
UCSB
Yun Wei
f
1
kT
  b  c 
(C je  Ccb )  ( Rex  Rc )Ccb , f max 
8Rbb Ccb
2f
qI c
40
U
30
unbounded U
Gains, dB
M. Urteaga
ε=2.7
20
MSG
10
h
21
V = 1.1 V, I =5 mA
ce
0
c
0.3 m x 18 m emitter,
0.7 m x 18.6 m collector
10
10
11
10
Frequency, Hz
Gains are high at 220 GHz, but
fmax can’t be extrapolated
12
10
Submicron transferred-substrate
IMS2003
HBTs and amplifier
UCSB
Yun Wei
20
S21
S11
S22
10
dB
0
-10
InAlAs/InGaAs TS HBTs: 0.3 m Three-stage
amplifier designs: 8.5 dB gain at 195 GHz,
M. Urteaga GaAs IC 2002
-20
-30
140
150
160
170
180
190
200
210
220
frequency (GHz)
40
Gains (dB)
30
U
20
343
395
10
InP TS DHBT: AE=0.4 x 7.5 m2, AC=1.0 x 8.75 m2,
JC=1.8 mA/m2, VBR,CEO = 8 V
fmax = 460 GHz, ft = 139 GHz, S. Lee DRC2002
h21
139
462
0
1
10
100
Frequency (GHz)
1000
Transferred substrate power HBT UCSB
IMS2003
and amplifier (IMS2002)
Yun Wei
8 x ( 1 m x 16 m emitter )
8 x ( 2 m x 20 m collector )
f0=85 GHz, BW3-dB=28 GHz, GT=8.5 dB
P1-dB=14.5 dBm, Psat=16dBm
Vbr_ceo>7 V, Imax=130mA
30
20
10
5
0 0
10
fmax=330 GHz
10
1
10
2
Frequency, GHz
10
3
8
10
6
5
4
0
2
T
Pout, dBm
Vcb=2.9V
MSG/MAG
U
Pout
15
G , dB
U, MSG/MAG, dB
IC=100mA
20
15
GT
AE=128um2
25
10
-5
0
-15
-10
-5
0
Pin, dBm
5
10
15
UCSB
IMS2003 Thermal instability in power HBTs
Yun Wei
f1
f2
f3
f4
4-emitter-finger
HBT topology
current
II0c
Jc
f1
temperature
f2
f3
f4
Multiplecurrent
fingerhogging
thermal
instability- Current Hogging
Long finger emitter
thermal instability
base
collector
sub-collector
C
C
HBT thermal stability factor
Q1

Q2
Q3
Q4
dVbe
VCE JA
K thermal stability 
I0-i
I0+i I0+i I1
dT Rex  Rballast  kT / qI E 0-i
Q1

Q2
Q3
Rdist I0 Rdist I0 Rdist I0 Rdist I0
Rex
Rex
E
Q4
E
IMS2003
Long emitter ballasting: Lightly
doped emitter expitaxy
Ti/Pt/Au
emitter cap
InGaAs/InAlAs
2x1019, 90 Å
grade
InP 5x1016, 1000 Å
LDE emitter
InP
300 Å
emitter
LDE doping level must not
limit maximum current density
LDE resistance
* un=2000cm2/V.S
Yun Wei
emitter contact
InGaAs 1x1019, 300 Å
8x1017,
UCSB

Band profile
Bias at Vbe=0.7 V, Vce=1.5 V
 qN d _ LDE v sat  J max
RLDE _ CONT   LDE t LDE
t LDE

 64  m 2
qun nE
1/4 Amp, 220 GHz fmax
InP Power DHBT
IMS2003
8 x ( 1 m x 24 m emitter )
8 x ( 2 m x 28 m collector )
~8 Ohm ballast per emitter finger
fmax>230 GHz
VBR_CE>7 V
Imax=250mA
Yun Wei
192 m2 common base LDE DHBT
25
0.25
IE step=50 mA
Optimum load bias condition
Ic=140 mA, Vce=3.7 V
20
U, MAG, dB
0.2
0.15
C
I ,A
UCSB
0.1
15
MAG
10
U
5
0.05
f
-1
0
1
2
3
V ,V
cb
4
5
0 9
10
10
10
max
11
10
Frequency, Hz
=235 GHz
12
10
UCSB
Amplifier Design
IMS2003
Yun Wei
• Common-base,
optimum load match
0.38 pS
50
•8 dB gain, 21 dBm
output power
0.58 pS
37
CSiN=92fF
2.3 pS
42
CSiN=44fF
0.15 pS
42
2.6 pS
17
0.31 pS
17
CSiN=44fF
CSiN=92fF
0.38 pS
50
•self-developed multifinger large signal HBT
model with thermal
effects
CSiN=15fF
CSiN=15fF
0.58 pS
37
20
5
25
4
20
16
S21
Sij (dB)
2
K
-20
8
10
6
1
B
-30
10
15
4
0
-40
5
2
S11
-50
-1
80
85
90
95
100
Frequency (GHz)
105
110
0
0
-4
0
4
Pin (dBm)
8
12
Gain (dB)
3
-10
Pout (dBm)
12
S22
0
K,B
•electromagnetic
simulation of all
passive elements
(Agilent Momentum)
14
10
IMS2003
UCSB
Amplifier Measurements
Yun Wei
Small signal measurement
 Emitter area: 1x16x16=256
 Collector area: 2x20x16=640 m2
• Device bias conditions:
20
0
Sij (dB)
m2
K
15
K, B
• Device dimensions:
S21
5
f0=75 GHz, GT=5.6 dB
P1-dB=18 dBm, Psat=19 dBm @ 4dB gain
25
-5 S22
10
S11
-10
5
-15
 Ic=130 mA, Vce=4.5 V
B
75
80
85
90
95
100
105
0
110
Frequency (GHz)
Large signal measurement
20
10
P
out
Gain
8
6
out
10
P
4
5
2
PAE
Die size: 0.38 mm  0.89 mm
0
-5
0
5
10
P (dBm)
in
0
15
Gain (dB)
PAE (%)
(dBm)
15
IMS2003
Conclusions
UCSB
Yun Wei
• Demonstrated Wideband Power DHBT: Ic_max> 240 mA, Vce_BR>7 V, fmax=300 GHz
• Wideband Power amplifiers: f0=75 GHz, GT=5.6 dB, Psat=19dBm
• Multi-finger emitter ballasting scheme provides direction for future high power and
high frequency MMIC work in transferred-substrate process
Future work
•Multi-stage wideband high power amplifiers
• ~200 GHz power amplifiers
Acknowledgements
This work is funded by ARO-MURI program under contract number PC249806.