Short Course, 2009 Conference on InP and Related Materials, Newport Beach, CA, May 10-14 Scaling of High Frequency III-V Transistors Mark Rodwell University of.
Download ReportTranscript Short Course, 2009 Conference on InP and Related Materials, Newport Beach, CA, May 10-14 Scaling of High Frequency III-V Transistors Mark Rodwell University of.
Short Course, 2009 Conference on InP and Related Materials, Newport Beach, CA, May 10-14 Scaling of High Frequency III-V Transistors Mark Rodwell University of California, Santa Barbara [email protected] 805-893-3244, 805-893-5705 fax THz Transistors Transistor bandwidths are increasing rapidly. Si MOSFETs will soon reach 500+ GHz cutoff frequencies. It is now clear III-V bipolar transistors can reach ~2-3 THz cutoff frequencies. III-V FETs have comparable potential, but the prospects and analysis are less clear. The limits to transistor bandwidth are: contact resistivities gate dielectric capacitance densities. device and IC power density & thermal resistance. challenges in reliably fabricating small devices. Why THz Transistors ? Why Build THz Transistors ? 500 GHz digital logic → fiber optics THz amplifiers→ THz radios → imaging, sensing, communications precision analog design at microwave frequencies → high-performance receivers Higher-Resolution Microwave ADCs, DACs, DDSs Performance Figures of Merit Transistor figures of Merit / Cutoff Frequencies gains, dB H21=short-circuit current gain MAG = maximum available power gain: impedance-matched fmax power-gain cutoff frequency ft current-gain cutoff frequency U= unilateral power gain: feedback nulled, impedance-matched What Determines Gate Delay ? Gat e Delay Determinedby : Deplet on i capacit ance charging t hrought helogic swing VLOGIC Ccb Cbe ,depletion IC Deplet on i capacit ance charging t hrought hebase resist ance Rbb Ccbi Cbe ,depletion Supplyingbase collect or st oredcharge (t b t c ) t ypically 10 - 25% of t ot aldelay; Delaynot wellcorrelat edwit h ft VLOGIC I C Ccb Cbe ,depl is 55% - 80% of t ot al. t hrought hebase resist ance IC Rbb t b t c VLOGIC T helogic swing must be at least kT VLOGIC 4 Rex I c q High I C / Ccb is a key HBTdesign object ive. J max,Kirk 2εvelectron(Vce, operating Vce,full depletion ) / Tc2 Acollector TC A 2 v emitter electron Rex must be verylow for low Vlogic at high J CcbVLOGIC VLOGIC IC 2VCE ,min HBT Design For Digital & Mixed-Signal Performance from charge-control analysis: Tgate ( VL / I C )( C je 6Ccbx 6Ccbi ) t f ( kT / qIC )( 0.5C je Ccbx Ccbi 0.5t f I C / VL ) Rex( 0.5Ccbx 0.5Ccbi 0.5t f I C / VL ) Rbb( 0.5C je Ccbi 0.5t f I C / VL ). analog ICs have similar bandwidth constraints... High-Frequency Electron Device Design Simple Device Physics: Resistance bulk resistance R bulk T A contact resistance -perpendicular R contact A contact resistance - parallel R contact A sheet W' 3L Good approximation for contact widths less than 2 transfer lengths. Simple Device Physics: Depletion Layers capacitance A C T transit time T t 2v space-charge limited current I max 2v 2 Vapplied Vdepletion 2 A T V C t I C where T I max Vapplied Vdepletion 2 Simple Device Physics: Thermal Resistance Exact Carslaw & Jaeger 1959 Long, Narrow Stripe HBT Emitter, FET Gate 1 1 L Rth ln Kth L W Kth L cylindrical heat flow sphericalheat flow near junction far from junction Square ( L by L ) IC on heat sink 1 L Rth sinh1 Kth L W 1 1 W sinh KthW L Rth 1 1 4 Kth L Kth L planar heat flow sphericalheat flow near surface far fromsurface Simple Device Physics: Fringing Capacitance C W 1.5 L T parallel- plate fringing wiring capacitance C/L VLSI power-delay limits slowly - varyingfunction C of W / G and W / G L 1 2 (1 to3) FET parasitic capacitances C parasitic / L ~ FET scaling constraints Electron Plasma Resonance: Not a Dominant Limit T 1 Lkinetic A q 2nm* T 1 Rbulk A q2nm*t m Cdisplacement A T dielectricrelaxationfrequency scatteringfrequency plasma frequency 1 Rbulk 1 / 2 1 / 2 f dielecic f dielecic f plasma 2 Lkinetic Cdisplacement Rbulk LkineticCdisplacement n - InGaAs 1 2 800 THz 7 THz 74 THz 80 THz 12 THz 31 THz 1 2t m 3.5 1019 / cm3 p - InGaAs 7 10 / cm 19 3 Electron Plasma Resonance: Not a Dominant Limit T 1 Lkinetic A q 2nm* T 1 Rbulk A q2nm*t m Cdisplacement A T dielectricrelaxationfrequency scatteringfrequency plasma frequency 1 Rbulk 1 / 2 1 / 2 f dielecic f dielecic f plasma 2 Lkinetic Cdisplacement Rbulk LkineticCdisplacement n - InGaAs 1 2 800 THz 7 THz 74 THz 80 THz 12 THz 31 THz 1 2t m 3.5 1019 / cm3 p - InGaAs 7 10 / cm 19 3 Electron Plasma Resonance: Not a Dominant Limit T 1 Lkinetic A q 2nm* T 1 Rbulk A q2nm*t m Cdisplacement A T dielectricrelaxationfrequency scatteringfrequency plasma frequency 1 Rbulk 1 / 2 1 / 2 f dielecic f dielecic f plasma 2 Lkinetic Cdisplacement Rbulk LkineticCdisplacement n - InGaAs 1 2 800 THz 7 THz 74 THz 80 THz 12 THz 31 THz 1 2t m 3.5 1019 / cm3 p - InGaAs 7 10 / cm 19 3 Electron Plasma Resonance: Not a Dominant Limit T 1 Lkinetic A q 2nm* T 1 Rbulk A q2nm*t m Cdisplacement A T dielectricrelaxationfrequency scatteringfrequency plasma frequency 1 Rbulk 1 / 2 1 / 2 f dielecic f dielecic f plasma 2 Lkinetic Cdisplacement Rbulk LkineticCdisplacement n - InGaAs 1 2 800 THz 7 THz 74 THz 80 THz 12 THz 31 THz 1 2t m 3.5 1019 / cm3 p - InGaAs 7 10 / cm 19 3 Frequency Limits and Scaling Laws of (most) Electron Devices t thickness C area / thickness Rtop contact / area Rbottom contact area PIN photodiode Rtop Rbottom sheet width 4 length I max, space-charge-limit area / thickness 2 power length T log length width To double bandwidth, reduce thicknesses 2:1 Improve contacts 4:1 reduce width 4:1, keep constant length increase current density 4:1 Bipolar Transistor Scaling Laws We Tb Changes required to double transistor bandwidth: parameter collector depletion layer thickness base thickness emitter junction width collector junction width emitter contact resistance current density base contact resistivity Wbc Tc emitterlength LE change decrease 2:1 decrease 1.414:1 decrease 4:1 decrease 4:1 decrease 4:1 increase 4:1 decrease 4:1 Linewidths scale as the inverse square of bandwidth because thermal constraints dominate. FET Scaling Laws LG gate width WG Changes required to double transistor bandwidth: parameter gate length gate dielectric capacitance density gate dielectric equivalent thickness channel electron density source & drain contact resistance current density (mA/mm) change decrease 2:1 increase 2:1 decrease 2:1 increase 2:1 decrease 4:1 increase 2:1 Linewidths scale as the inverse of bandwidth because fringing capacitance does not scale. THz & nm Transistors: it's all about the interfaces Metal-semiconductor interfaces (Ohmic contacts): very low resistivity Dielectric-semiconductor interfaces (Gate dielectrics): very high capacitance density Transistor & IC thermal resistivity. Bipolar Transistors Indium Phosphide Heterojunction Bipolar Transistors Z. Griffith E. Lind Bipolar Transistor Operation Vbe Vce Ic Because emit t erenergy dist ribut ion is t hermal(exponental) i I c exp(qVbe / kT ) Almostall elect ronsreachingbase pass t hroughit I c varieslit t lewit h collect orvolt age Transistor Hybrid-Pi equivalent circuit model Rbe / gm gm qIE / nkT Cbe C je gm (t b t c ) Cutoff frequencies in HBTs kT 1 kT t base t collector C je Cbc Rex Rcoll 2ft qIE qIE t base Tb2 2Dn f max ft 8RbbCcbi t collector Tc 2veff Epitaxial Layer Structure Epitaxy: InP Emitter, InGaAs Base, InP Collector, Both Junctions Graded M. Dahlstrom Z. Griffith UCSB Key Features: M. Urteaga TSC N++ InGaAs emitter contact layer emitter InP emitter graded base InGaAs/InAlAs superlattice e/b grade collector subcollector emitter cap InGaAs graded base bandgap or doping grade BC setback layer Layer Material Doping Thickness (nm) Emitter cap In0.53Ga0.47As 8 1019 cm-3: Si 25 N emitter InP 8 10 cm : Si 50 N- emitter InP 1 1018 cm-3: Si 20 In0.53Ga0.47As / In0.52Al0.48As, 1.6 nm period In0.53Ga0.47As / In0.52Al0.48As, 1.5 nm period N: 1 1017 cm-3: Si 24 P: 8 1017 cm-3: C 1 Base In0.53Ga0.47As P: 7-4 1019 cm-3: C 24.5 Setback In0.53Ga0.47As N: 9 1016 cm-3: Si 4.5 Base-collector grade In0.53Ga0.47As / In0.52Al0.48As, 1.6 nm period N: 9 1016 cm-3: Si 15 Pulse doping InP 6 1018 cm-3: Si 3 Collector InP N: 2 1016 cm-3: Si 82 etch-stop In0.53Ga0.47As 19 N: 8 10 cm : Si 5 Subcollector InP N: 8 1019 cm-3: Si ~200 + InGaAs/InAlAs superlattice b/c grade Emitter-base grade InP collector InGaAs etch-stop layer thin for heat conduction InP subcollector Emitter-base grade 19 -3 -3 M. Dahlstrom Z. Griffith E. Lind Epitaxy with Abrupt BE Junction Similar design emitter Abrupt E/B junction (no e/b grade) graded base Advantages: ease of stopping emitter etch on base → good base contacts Disadvantages: Increased Vbe . Cannot make e/b ledge. collector subcollector emitter cap Layer Material Doping Thickness (nm) Emitter cap In0.53Ga0.47As 8 1019 cm-3: Si 25 InP 8 10 cm : Si 50 N emitter InP 1 10 cm : Si 20 N- emitter InP N: 1 1017 cm-3: Si 24 Emitter-base grade In0.53Ga0.47As / In0.52Al0.48As, 1.5 nm period P: 8 1017 cm : C 1 Base In0.53Ga0.47As P: 7-4 1019 cm-3: C 24.5 Setback In0.53Ga0.47As N: 9 10 cm : Si 4.5 Base-collector grade In0.53Ga0.47As / In0.52Al0.48As, 1.6 nm period N: 9 1016 cm-3: Si 15 Pulse doping InP 6 1018 cm : Si 3 Collector InP N: 2 1016 cm-3: Si 82 In0.53Ga0.47As 19 -3 N: 8 10 cm : Si 5 InP 19 -3 ~200 + N emitter - etch-stop Subcollector 19 18 -3 -3 -3 -3 16 -3 N: 8 10 cm : Si Alternative Grades for Thinner Epitaxy Common Grade in Literature InGaAs/InAlAs 18 nm thick, 1.5 nm period Sub-monolayer Grade 0.15 nm InAlAs, (0.15 to 0.165 nm InGaAs) 10.8 nm thick Strained InxGa1-xAs Grade InGaAs/GaAs 6 nm E . Lind Z. Griffith Other Methods of Grading the Junctions InGaAs/InGaAsP/InP grade InP/GaAsSb/InP DHBT IEDM 2001 -suitable for MOCVD growth - does not need B/C grading - excellent results - E/B band alignment through GaAsSb alloy ratio (strain) or InAlAs emitter Transport Analysis Approximate Carrier Transit Times We Tb Wbc Tc Base Transit Time t b Tb2 2Dn Tb vexit Collector Transit Time t c Tc 2v sat emitterlength LE Base Transit Time with Graded Base Dino Mensa Assumes : DN 40 cm2 / V sec vexit 3 107 cm/s Drift - diffusion modelcorrectif τ b t m Dn m* / kT 35 fs t b Wb Lg / Dn L / Dn Lg / vsat 1 e 2 g where Lg is thegrading length: Lg Wb kT / Eg Wb / Lg Base Transit Time: Grading Approaches Compositional grading: strained graded InGaAs base 52 meV potentialdrop : In0.455Ga 0.545As In0.53Ga 0.47As (strained) Doping grading unstrained In0.53Ga0.47As base Carbon doping variedfrom: ~ 8 1019 /cm3 to ~ 5 1019 /cm3 Dino Mensa Miguel Urteaga Mattias Dahlström T. Ishibashi Collector Transit Time From elementaryelectrostatics (refer t osketch) tc (1 x / Tc ) Tc dx 0 v( x) 2veff TC t c is moresensitiveto velocitynear base. Fortuitous, as initialvelocityis high, thendecreases due to - L scattering. From best fit toRF data,or from Kirk current density vs. collectorvoltage: InP: 3.5 107 cm/s for ~ 70 - 200 nm layers Space-Charge Limited Current Density → Ccb charging time Collector Depletion Layer Collapse Vcb,min (qNd )(Tc2 / 2 ) Collector Field Collapse (Kirk Effect) Vcb ( J / vsat qNd )(Tc2 / 2 ) J max 2veff (Vcb Vcb,min 2 ) / Tc2 NotethatVbe , hence(Vcb ) Vce Ccb VLOGIC / I C Acollector Tc VLOGIC Acollector VLOGIC IC VCE VCE ,min Aemitter TC 2veff Collector capacitance charging time scales linearly with collector thickness if J = Jmax Space-Charge-Limited Current (Kirk effect) in DHBTs 500 0.6 V cb 0.0 V 2vsat (Vce Vce,min ) / Tc2 cb -0.2 V 300 cb f , -0.3 V t 200 J max 2vsat (Vcb Vcb,min 2 ) / Tc2 0.2 V cb t Kirk - effect thresholdincreases with increasedVce 400 f (GHz) Decreasein ft and f max at high J 100 0 2 cb 4 6 8 2 J (mA/um ) 10 12 e I b step = 180 uA 40 35 12 30 10 25 Peak f , f 8 t max 20 6 15 4 10 2 5 0 0 0 0.5 1 1.5 V ce (V) 2 2.5 c where t heeffect ivecollect or currentflux area is Aeffective LE WE 2TC cb I (mA) dVce T Rspacecharge dIc 2vsat Aeffective V =0V 2 2 c 2 14 Je (mA/mm ) Increasein Vce, sat wit h increasedJ A = 0.6 x 4.3 mm jbe 16 T. Ishibashi Current-induced Collector Velocity Overshoot 2.5 1.5 ec tau , ps 2 J=0 300 Å InGaAs base 1 2000 Å InP collector 0.5 280 GHz peak ft 0 0 0.5 1 1.5 2 2.5 2 inverse current density, 1/J,mm /mA 3 3.5 Increasedcurrent reduces - L scat t ering, increasesv ( x ) in early part of collect or reduced collect ort ransit tme i (1 x / Tc ) dx is not exact lyproport ion al to I c v( x) 0 TC Qbase I c J= 8 mA/um2 correctdefinitionof collect ort ransit tme i is Q Q t c base nott c base I c Ic Nakajima, H. "A generalized expression for collector transit time of HBTs taking account of electron velocity modulation," Japanese Journal of Applied Physics, vo. 36, Feb. 1997, pp. 667-668 CAUTION : observed nonlineart ec variation is also in part due to modulation in emitter ideality factor wit h bias current (1/g m often does not vary as Rex nkT / qI E ), and due to variation of C je with bias. Transit time Modulation Causes Ccb Modulation Qbase constant Qbase Tc electrons Ccb Qbase holes Vcb tf t Qbase holes Ccb f I c I c Vcb I b , ΔQb a se Camnitz and Moll, Betser & Ritter, D. Root h o les 500 CollectorVelocity Modulation: t f Vcb 0 Ccb I c 0 1 400 400 - strongeffect in InGaAsSHBTs - weak effect in InP DHBTs 0 2 4 6 8 2 J (mA/um ) 10 e 12 0 -1 -2 0 7 100 200 nm 300 400 6 e Increasein τ c with Vcb reduced Ccb 1 cb -0.2 V 5 cb 300 t 8 C /A (fF/mm2) 200 nm 2 cb f , -0.3 V -2 100 cb -0.2 V 300 100 -1 0.2 V cb 200 0 0 0.0 V t L eV cb f (GHz) 2 Kirk Effect : t f Vcb 0 Ccb I c 0 0.6 V eV holes 0 qn( x ) A1 x / Tc dx Vbc A / Tc f ( I c ,Vcb ) 4 0.0 V Increasein Ccb is due to both 0.2 V 3 V = 0.6 V cb 2 0 2.5 5 7.5 J (mA/mm2) e 10 12.5 - base pushoutinto collector - and modulationof τb by Vcb Emitter-Base Junction Effects Space-charge storage Voltage drops in depletion region Electron degeneracy contributes 1 - μm2 equivalent series resistance 2 10 1 J(mA/um^2) 10 Rodwell Lundstrom. 0 10 10 -1 10 -2 10 -3 Fermi-Dirac Boltzmann -0.3 E fn ( x ) x J qmn n( x ) need thin layer & high electron density -0.2 -0.1 V - 0 0.1 0.2 be Highly degeneratelimit J need thin layer to avoid substantial charge storage delays Equivalent series resistance approximation qm * ( E f Ec )2 2 23 mA E Ec 130 2 f mm 0.1 eV for InP emitter(m*/m0 0.08). 2 RC parasitics Simple Device Physics: Resistance bulk resistance R bulk T A contact resistance -perpendicular R contact A contact resistance - parallel R contact A sheet W' 3L Good approximation for contact widths less than 2 transfer lengths. HBT RC Parasitics base contact width < 2 transfer lengths → simple analysis Limiting case of Pulfrey / Vaidyanathan fmax model. HBT RC Parasitics Rex contact,emitter / Aemitter emitterlength LE Rspread sWe / 12LE Rgap sWgap / 4LE Rspread ,contact sWbc / 6LE Rcontact contact,baseWbc / Abase _ contacts Ccb,e Aemitter / Tc Ccb,gap Agap / Tc Ccb,contact Abase _ contacts / Tc Base-Collector Time Constant & Fmax. f max ft 8RbbCcbi where t cb RbbCcbi Ccb,contact Rcontact Ccb, gap ( Rcontact Rspread ,contact Rgap / 2) Ccb,e ( Rcontact Rspread ,contact Rgap Rspread ) Relationship to Equivalent Circuit Model Ccbx Ccbi Ccb,e Ccb,gap Ccb,contact Rbb Rspread Rgap Rcontact,spread Rcontact RbbCcbi Ccb,contact Rcontact Ccb, gap ( Rcontact Rspread ,contact Rgap / 2) Ccb,e ( Rcontact Rspread ,contact Rgap Rspread ) Device Design Device Scaling Simple Device Physics: Thermal Resistance Exact Carslaw & Jaeger 1959 Long, Narrow Stripe HBT Emitter, FET Gate 1 1 L Rth ln Kth L W Kth L cylindrical heat flow sphericalheat flow near junction far from junction Square ( L by L ) IC on heat sink 1 L Rth sinh1 Kth L W 1 1 W sinh KthW L Rth 1 1 4 Kth L Kth L planar heat flow sphericalheat flow near surface far fromsurface Bipolar Transistor Design We Tb t b T 2Dn 2 b Wbc Tc t c Tc 2v sat Ccb Ac /Tc I c,max vsat Ae (Vce,operating Vce,punch-through ) / T 2 c P T LE Le 1 ln We Rex contact/Ae We Wbc contact Rbb sheet 12Le 6 Le Acontacts emitterlength LE Bipolar Transistor Design: Scaling We Tb t b T 2Dn 2 b Wbc Tc t c Tc 2v sat Ccb Ac /Tc I c,max vsat Ae (Vce,operating Vce,punch-through ) / T 2 c P T LE Le 1 ln We Rex contact/Ae We Wbc contact Rbb sheet 12Le 6 Le Acontacts emitterlength LE Bipolar Transistor Scaling Laws We Tb Changes required to double transistor bandwidth: parameter collector depletion layer thickness base thickness emitter junction width collector junction width emitter contact resistance current density base contact resistivity Wbc Tc emitterlength LE change decrease 2:1 decrease 1.414:1 decrease 4:1 decrease 4:1 decrease 4:1 increase 4:1 decrease 4:1 Linewidths scale as the inverse square of bandwidth because thermal constraints dominate. Thermal Resistance Scaling : Transistor, Substrate, Package sphericalflow for r Le cylindrical heat flow near junction Tsubstrate Tpackage L P ln e K InP LE We K InP P planarflow for r DHBT / 2 1 1 P Tsub D / 2 2 D LE D K InP increases insignificant logarithmically variation increasesquadratically if Tsub is constant 1 1 Pchip 4 KCuWchip junction temperature rise, Kelvin 140 Tsub 40 mm (150GHz/ f clock ) 120 W iringlenghts total 2000- HBT CML IC scale as 100 80 1/bandwidth. substrate: cylindrical+spherical regions 60 scales as substrate: planar region 20 0 100 P ower densit y, package 40 (bandwidt h) 2 . 200 300 400 500 600 master-slave D-Flip-Flop clock frequency, GHz 700 Thermal Resistance Scaling : Transistor, Substrate, Package sphericalflow for r Le cylindrical heat flow near junction Tsubstrate Tpackage L P ln e K InP LE We K InP P planarflow for r DHBT / 2 1 1 P Tsub D / 2 2 D LE D K InP increases insignificant logarithmically variation increasesquadratically if Tsub is constant 1 1 Pchip 4 KCuWchip junction temperature rise, Kelvin 140 Tsub 40 mm (150GHz/ f clock ) 120 W iringlenghts 2000- HBT CML IC Probable best solution: scale as 1/bandwidth. Thermal Vias ~500 nm below InP subcollector P ower densit y, ...over full active IC area. scales as total 100 80 substrate: cylindrical+spherical regions 60 package 40 substrate: planar region 20 0 100 (bandwidt h) 2 . 200 300 400 500 600 master-slave D-Flip-Flop clock frequency, GHz 700 InP Bipolar Transistor Scaling Roadmap industry university university appears →industry 2007-8 feasible maybe emitter 512 16 256 8 128 4 64 2 32 nm width 1 mm2 access base 300 20 175 10 120 5 60 2.5 30 nm contact width, 1.25 mm2 contact collector 150 4.5 4.9 106 9 4 75 18 3.3 53 36 2.75 37.5 nm thick, 72 mA/mm2 current density 2-2.5 V, breakdown 520 850 430 240 730 1300 660 330 1000 2000 1000 480 1400 GHz 2800 GHz 1400 GHz 660 GHz ft fmax power amplifiers digital 2:1 divider 370 490 245 150 We Tb Wbc Tc Can we make a 1 THz SiGe Bipolar Transistor ? InP emitter 64 2 SiGe 18 1.2 nm width mm2 access 56 1.4 nm contact width, mm2 contact collector 53 36 2.75 15 125 ??? nm thick mA/mm2 V, breakdown ft fmax 1000 2000 GHz GHz Simple physics clearly drives scaling transit times, Ccb/Ic → thinner layers, higher current density high power density → narrow junctions base small junctions→ low resistance contacts Key challenge: Breakdown 15 nm collector → very low breakdown (also need better Ohmic contacts) 64 2.5 1000 2000 PAs 1000 1000 GHz digital 480 480 GHz (2:1 static divider metric) Assumes collector junction 3:1 wider than emitter. Assumes SiGe contacts 2:1 wider than junctions HBT Design For Digital & Mixed-Signal Performance from charge-control analysis: Tgate ( VL / I C )( C je 6Ccbx 6Ccbi ) t f ( kT / qIC )( 0.5C je Ccbx Ccbi 0.5t f I C / VL ) Rex( 0.5Ccbx 0.5Ccbi 0.5t f I C / VL ) Rbb( 0.5C je Ccbi 0.5t f I C / VL ). InP HBT: Status InP DHBTs: September 2008 400 500 GHz GHz 1000 600 GHz 900 GHz 800 GHz 700 GHz ft or f max alone Teledyne DBHT ( ft f max ) / 2 125 nm UIUC DHBT 800 NTT DBHT max (GHz) 250 nm f popul a rmetri cs: ft f max ft f max (1 ft 1 f max ) 1 ETHZ DHBT 600 UIUC SHBT 250 nm UCSB DHBT 400 NGST DHBT 600nm HRL DHBT IBM SiGe 200 350 nm Vitesse DHBT much better metri cs: power amplifiers: P AE,associat edgain, mW /mm low noise amplifiers: Fmin , associat edgain, digit al : f clock , hence (Ccb V / I c ), Updated Sept. 2008 0 0 200 400 600 ft (GHz) 800 1000 ( Rex I c / V ), ( Rbb I c / V ), (τb τc ) 512 nm InP DHBT 500 nm mesa HBT 150 GHz M/S latches 175 GHz amplifiers Laboratory Technology UCSB / Teledyne / GCS UCSB 500 nm sidewall HBT DDS IC: 4500 HBTs 20-40 GHz op-amps Teledyne Teledyne / BAE Teledyne / UCSB Production ( Teledyne ) Z. Griffith M. Urteaga P. Rowell D. Pierson B. Brar V. Paidi ft = 405 GHz fmax = 392 GHz Vbr, ceo = 4 V 20 GHz clock 53-56 dBm OIP3 @ 2 GHz with 1 W dissipation 40 H mA/mm2 10 30 dB 256 nm Generation InP DHBT 150 nm thick collector U 21 20 f 10 max = 780 GHz 10 10 10 11 3 4 5 12 11 10 20 2 = 560 GHz 15 10 5 ft = 560 GHz 324 GHz Amplifier 2 21 mA/mm dB 10 max 1 V U f 0 12 10 ce 10 10 10 9 10 H 20 4 0 Hz 70 nm thick collector 30 6 2 f = 424 GHz 0 t 9 10 8 0 0 9 10 10 10 11 10 0 12 10 1 2 V Hz 3 4 ce 60 nm thick collector 40 H 2 U mA/mm dB 200 GHz master-slave latch design 30 30 21 20 10 fmax = 218 GHz 20 10 f = 660 GHz Z. Griffith, E. Lind J. Hacker, M. Jones t 0 9 10 10 10 11 10 Hz 10 12 0 0 1 2 V ce 3 324 GHz Medium Power Amplifiers in 256 nm HBT ICs designed by Jon Hacker / Teledyne Teledyne 256 nm process flow- Hacker et al, 2008 IEEE MTT-S Gain (dB), Power (dBm), PAE (%) 20 10 40 Output Power (dBm) Gain (dB) Drain Current (mA) PAE (%) 30 0 20 -10 10 -20 -20 0 -15 -10 -5 Input Power (dBm) 0 5 Current, mA ~2 mW saturated output power 128 / 64 / 32 nm HBT Technologies Conventional ex-situ contacts are a mess THz transistor bandwidths: very low-resistivity contacts are required textbook contact with surface oxide with metal penetration Interface barrier → resistance Further intermixing during high-current operation → degradation Improvements in Ohmic Contacts 128 nm generation requires ~ 4 - μm2 emitter & base resistivities A.. Crook V. Jain A. Barakshar M. Wistey U. Singisetti S. Bank 64 nm generation requires ~ 2 - μm2 Contacts to N-InGaAs*: Mo MBE in-situ 2.2 (+/- 0.5) - μm2 TiW ex-situ / NH4 pre-clean ~2.2 - μm2 variable between process runs Contacts to P-InGaAs: Mo MBE in-situ below 2.5 - μm2 Pd/Ti... ex-situ ~4 - μm2 ...far better contacts coming... *measured emitter resistance remains higher than that of contacts. Mo Emitter Contacts: Robust Integration into Process Flow Proposed Process Integration: M. Wistey A. Barakshar U. Singisettti V. Jain Process Must Change Greatly for 128 / 64 / 32 nm Nodes control undercut → thinner emitter thinner emitter → thinner base metal Undercutting of emitter ends {101}A planes: fast {111}A planes: slow thinner base metal → excess base metal resistance E. Lind 128 nm Emitter Process: Dry Etched Metal & Semiconductor a b Litho Cr pattern metal c SF6/Ar ICP SiNsidewall x sidewall d e dry/N etch Cl 2 2 ICP Wetetch Etch wet HCl:H3PO4 BHF SiO2 TiW Ti InGaAs n++ InP n InP n InP n InGaAs p++ Base InGaAs p++ Base InGaAs p++ Base InGaAs p++ Base 20 H 21 10 max mA/mm f 2 U 20 dB 10 10 10 9 10 30 InGaAs p++ Base 12 InP n 11 InGaAs n++ 10 InGaAs n++ = 560 GHz 10 5 ft = 560 GHz 0 9 10 15 0 10 10 11 10 Hz results @ c.a. 200 nm emitter metal width 12 10 0 1 2 V ce 3 4 Planarization E/B Processes for 64 & 32 nm Planarization boundary E; Lobisser V. Jain G. Burek III-V FET Scaling Simple FET Scaling Goal double transistor bandwidth when used in any circuit → reduce 2:1 all capacitances and all transport delays → keep constant all resistances, voltages, currents All lengths, widths, thicknesses reduced 2:1 S/D contact resistivity reduced 4:1 Cgd / Wg ~ gm / Wg ~ v / Tox Cgs / Wg ~ Lg / Tox Cgs, f / Wg ~ Csb / Wg ~ Lc / Tsub If Tox cannot scale with gate length, Cparasitic / Cgs increases, gm / Wg does not increase hence Cparasitic /gm does not scale FET scaling: Output Conductance & DIBL ( Cgs expressionneglectsD.O.S. effects) Cgs ~ Wg Lg / Tox Id Q /t Cd ch ~ Wg where Q CgsVgs Cd chVds transconductance output conductance → Keep Lg / Tox constant as we scale Lg FET Scaling Laws LG gate width WG Changes required to double transistor bandwidth: parameter gate length gate dielectric capacitance density gate dielectric equivalent thickness channel electron density source & drain contact resistance current density (mA/mm) change decrease 2:1 increase 2:1 decrease 2:1 increase 2:1 decrease 4:1 increase 2:1 III-V MOSFETs for VLSI What is it ? MOSFET with an InGaAs channel Why do it ? low electron effective mass→ higher electron velocity more current, less charge at a given insulator thickness & gate length very low access resistance What are the problems ? low electron effective mass→ constraints on scaling ! must grow high-K on InGaAs, must grow InGaAs on Si Our focus today is III-V FET scaling generally Low Effective Mass Impairs Vertical Scaling Shallow electron distribution needed for high gm / Gds ratio. 2 . Energy of Lth well state L2 / m*Twell For thin wells, only 1st state can be populated. For very thin wells, 1st state approaches L-valley. Only one vertical state in well. Minimum ~ 5 nm well thickness. → constrains gate length scaling. Density-Of-States Capacitance E f Ewell ns /(nm* / 2 ) (bidirectional motion) V f Vwell s / cdos where cdos q2nm* / 2 and n is the # of band minima Two implications: - With Ns >1013/cm2, electrons populate satellite valleys Fischetti et al, IEDM2007 - Transconductance limited by finite state density Solomon & Laux , IEDM2001 Drive Current in the Ballistic & Degenerate Limits mA Vgs Vth J K 84 mm 1 V 0.25 3/ 2 , where K 0.7 nm, n=6 K 1/ 2 * dos ,o / cox ) n ( m / mo ) 3/ 2 0.4 nm, n=6 Error bars on Si data points correct for (Ef-Ec)>> kT approximation 0.2 0.15 1 (c n m* mo n = # band minima cdos,o = density of states capacitance for m*=mo & n=1 0.8 nm, n=1 0.1 1.0 nm, n=1 0.05 EOT includes wavefunction depth (0.5 nm for 3.5 nm InGaAs well) 0 0.01 0.1 m*/m 1 o HEMT Scaling Challenge: Low Gate Barrier Gate barrier is low: ~0.6 eV Source Gate Drain K Shinohara Tunneling through barrier → sets minimum thickness Emission over barrier → limits 2D carrier density Ec EF Ec EF Ewell- Ewell- At Ns 1013 / cm2 , (E f Ec ) ~ 0.6 eV HEMT Scaling Challenge: High Access Resistance Gate barrier also lies under source / drain contacts Source Gate Drain N+ layer widegap barrier layer K Shinohara low leakage: need high barrier under gate low resistance: need low barrier under contacts Ec EF Ec EF Ewell- N+ cap layer Ewell- THz III-V FET Scaling: What Must Be Done FET Scaling Laws LG As gate length is reduced... channel thickness should be reduced... barrier thickness should be reduced... gate width WG Changes required to double transistor bandwidth: parameter gate length gate dielectric capacitance density gate dielectric equivalent thickness channel electron density source & drain contact resistance current density (mA/mm) change decrease 2:1 increase 2:1 decrease 2:1 increase 2:1 decrease 4:1 increase 2:1 target gm/Wg and Id/Wg should be increased... source and drain access resistivity should be reduced... We face serious difficulties in doing these. A MOSFET Might Scale Better than a HEMT sidewall gate dielectric metal gate source contact N+ source drain contact quantum well / channel N+ drain barrier substrate no gate barrier under S/D contacts high-K gate barrier Overlap between gate and N+ source/drain Interconnects Coplanar Waveguide No ground vias No need (???) to thin substrate Hard to ground IC to package +V +V +V 0V Parasitic microstrip mode ground plane breaks → loss of ground integrity -V 0V substrate mode coupling or substrate losses kz III-V: semi-insulating substrate→ substrate mode coupling Silicon conducting substrate → substrate conductivity losses +V 0V Parasitic slot mode Repairing ground plane with ground straps is effective only in simple ICs In more complex CPW ICs, ground plane rapidly vanishes → common-lead inductance → strong circuit-circuit coupling poor ground integrity loss of impedance control ground bounce coupling, EMI, oscillation 40 Gb/s differential TWA modulator driver note CPW lines, fragmented ground plane 35 GHz master-slave latch in CPW note fragmented ground plane 175 GHz tuned amplifier in CPW note fragmented ground plane Classic Substrate Microstrip W Zero ground inductance in package Thick Substrate → low skin loss skin H 1 1/ 2 r Brass carrier and assembly ground IC with backside ground plane & vias interconnect substrate No ground plane breaks in IC H High via inductance 12 pH for 100 mm substrate -- 7.5 @ 100 GHz lines must be widely spaced Line spacings must be ~3*(substrate thickness) near-zero ground-ground inductance TM substrate mode coupling kz Strong coupling when substrate approaches ~ld / 4 thickness ground vias must be widely spaced all factors require very thin substrates for >100 GHz ICs → lapping to ~50 mm substrate thickness typical for 100+ GHz IC vias eliminate on-wafer ground loops III-V MIMIC Interconnects -- Thin-Film Microstrip narrow line spacing → IC density no substrate radiation, no substrate losses fewer breaks in ground plane than CPW ... but ground breaks at device placements InP mm-wave PA (Rockwell) still have problem with package grounding ...need to flip-chip bond thin dielectrics → narrow lines → high line losses → low current capability → no high-Zo lines W Zo ~ o H r1/ 2 W H H III-V MIMIC Interconnects -- Inverted Thin-Film Microstrip narrow line spacing → IC density Some substrate radiation / substrate losses No breaks in ground plane ... no ground breaks at device placements still have problem with package grounding InP 150 GHz master-slave latch ...need to flip-chip bond thin dielectrics → narrow lines → high line losses → low current capability → no high-Zo lines InP 8 GHz clock rate delta-sigma ADC No clean ground return ? → interconnects can't be modeled ! 35 GHz static divider interconnects have no clear local ground return interconnect inductance is non-local interconnect inductance has no compact model 8 GHz clock-rate delta-sigma ADC thin-film microstrip wiring every interconnect can be modeled as microstrip some interconnects are terminated in their Zo some interconnects are not terminated ...but ALL are precisely modeled InP 8 GHz clock rate delta-sigma ADC VLSI Interconnects with Ground Integrity & Controlled Zo narrow line spacing → IC density no substrate radiation, no substrate losses negligible breaks in ground plane negligible ground breaks @ device placements still have problem with package grounding ...need to flip-chip bond thin dielectrics → narrow lines → high line losses → low current capability → no high-Zo lines Conclusions Few-THz Transistors Few-THz InP Bipolar Transistors: can it be done ? Scaling limits: contact resistivities, device and IC thermal resistances. 62 nm (1 THz ft, 1.5 THz fmax ) scaling generation is feasible. 700 GHz amplifiers, 450 GHz digital logic Is the 32 nm (1 THz amplifiers) generation feasible ? Few-THz InP Field-Effect Transistors: can it be done? challenges are gate barrier, vertical scaling, source/drain access resistance, increased gm and drive current. 2DEG carrier concentrations must increase. S/D regrowth offers a path to lower access resistance. Solutions needed for gate barrier: maybe even MOSFET ? What Would We Do With Them500?GHz digital logic → fiber optics THz amplifiers→ THz radios → imaging, sensing, communications precision analog design at microwave frequencies → high-performance receivers Higher-Resolution Microwave ADCs, DACs, DDSs