2010 IEEE International Topical Meeting on Microwave Photonics, October 5-6, 2010, Montreal 100+ GHz Transistor Electronics: Present and Projected Capabilities Mark Rodwell University of.
Download ReportTranscript 2010 IEEE International Topical Meeting on Microwave Photonics, October 5-6, 2010, Montreal 100+ GHz Transistor Electronics: Present and Projected Capabilities Mark Rodwell University of.
2010 IEEE International Topical Meeting on Microwave Photonics, October 5-6, 2010, Montreal 100+ GHz Transistor Electronics: Present and Projected Capabilities Mark Rodwell University of California, Santa Barbara [email protected] 805-893-3244, 805-893-5705 fax THz Transistors Why Build THz Transistors ? 500 GHz digital logic → fiber optics THz amplifiers→ THz radios → imaging, sensing, communications precision analog design at microwave frequencies → high-performance receivers Higher-Resolution Microwave ADCs, DACs, DDSs Transistor figures of Merit / Cutoff Frequencies gains, dB H21=short-circuit current gain MAG = maximum available power gain: impedance-matched fmax power-gain cutoff frequency ft current-gain cutoff frequency U= unilateral power gain: feedback nulled, impedance-matched What Determines Digital Gate Delay ? f CV/I terms 0 . 5t f I C / V L ) dominate ( V L / I C )( C je 6 C cbx 6 C cbi C wire ) ( kT / qI C )( 0 . 5 C je C cbx C cbi → T gate t R ex ( 0 . 5 C cbx 0 . 5 C cbi 0 . 5t f I C / V L ) R bb ( 0 . 5 C je C cbi 0 . 5t f I C / V L ). analog ICs have somewhat similar bandwidth considerations... How to Make THz Transistors High-Speed Transistor Design Depletion Layers C Fringing Capacitances A T t C finging / L ~ T C finging / L ~ 2v I max A 4 v sat (V appl ) T Thermal Resistance 2 Bulk and Contact Resistances R th R contact / A contact te rms dominate 1 L ln K th L W K th L 1 Frequency Limits and Scaling Laws of (most) Electron Devices PIN photodiode R top t thickness C area / thickness R top contact / area R bottom I max, contact area T length sheet 4 space - charge - limit power R bottom area / width length thickness 2 length log width To double bandwidth, reduce thicknesses 2:1 Improve contacts 4:1 reduce width 4:1, keep constant length increase current density 4:1 Changes required to double transistor bandwidth We emitter length LE HBT parameter emitter & collector junction widths current density (mA/mm2) current density (mA/mm) collector depletion thickness base thickness emitter & base contact resistivities change decrease 4:1 increase 4:1 constant decrease 2:1 decrease 1.4:1 decrease 4:1 nearly constant junction temperature → linewidths vary as (1 / bandwidth)2 LG gate width W G constant voltage, constant velocity scaling FET parameter gate length current density (mA/mm), gm (mS/mm) channel 2DEG electron density gate-channel capacitance density dielectric equivalent thickness channel thickness channel density of states source & drain contact resistivities change decrease 2:1 increase 2:1 increase 2:1 increase 2:1 decrease 2:1 decrease 2:1 increase 2:1 decrease 4:1 fringing capacitance does not scale → linewidths scale as (1 / bandwidth ) Electron Plasma Resonance: Not a Dominant Limit T L kinetic R bulk dielectric relaxation f dielectric n - InGaAs 3 . 5 10 19 / cm frequency 1 / 2 C displaceme 1 2 nt R bulk 1 2 A q nm T 7 10 / cm 3 nt T 1 A q nm t m 2 * scattering frequency f scattering 1 R bulk 2 L kinetic plasma frequency f plasma 1 / 2 L kinetic C displaceme 1 2 t m 800 THz 7 THz 74 THz 80 THz 12 THz 3 1 THz 3 p - InGaAs 19 C displaceme * A nt Thermal Resistance Scaling : Transistor, Substrate, Package cylindrica spherical l heat flow L ln e K InP L E W e P P K InP increases T package jun ctio n te m p e ra tu re ris e , K e lv in 140 cally for r D HBT / 2 1 1 P T sub D / 2 2 L K D D InP E insignific logarithmi planar flow for r L e near junction T substrate flow increases ant quadratica lly if T sub is constant variation 1 1 Pchip 4 K Cu W chip T sub 40 m m (150 GHz / f clock ) 120 Wiring to tal lenghts 2000 - HBT CML IC scale as 100 80 1/bandwidt su b s tra te : c ylin d rica l+ s p h e rica l re g io n s 60 Power density, package 40 scales as s u b s tra te : p la n a r re g io n 20 (bandwidth 0 100 200 300 400 h. 500 600 m a ste r-sla ve D -F lip-F lo p clo ck fre qu e n cy, G H z 700 2 ) . Thermal Resistance Scaling : Transistor, Substrate, Package cylindrica spherical l heat flow L ln e K InP L E W e P P K InP increases T package jun ctio n te m p e ra tu re ris e , K e lv in 140 cally for r D HBT / 2 1 1 P T sub D / 2 2 L K D D InP E insignific logarithmi planar flow for r L e near junction T substrate flow increases ant quadratica lly if T sub is constant variation 1 1 Pchip 4 K Cu W chip T sub 40 m m (150 GHz / f clock ) 120 Wiring lenghts Probable best solution: scale as 1/bandwidt h. Thermal Vias ~500 nm below InP subcollector Power density, ...over full active IC area. scales as to tal 2000 - HBT CML IC 100 80 su b s tra te : c ylin d rica l+ s p h e rica l re g io n s 60 package 40 s u b s tra te : p la n a r re g io n 20 (bandwidth 0 100 200 300 400 500 600 m a ste r-sla ve D -F lip-F lo p clo ck fre qu e n cy, G H z 700 2 ) . Bipolar Transistors 150 nm thick collector 256 nm InP HBT 40 340 GHz dynamic frequency divider Z. Griffith 10 2 30 21 20 f 10 M. Seo, UCSB/TSC U m ax 8 m A /m m dB H 6 4 = 780 G Hz 2 f = 424 G H z 10 10 10 9 10 Hz 70 nm thick collector M. Seo, UCSB/TSC IMS 2010 11 10 0 12 H m ax 4 5 ce 20 2 E. Lind m A /m m dB f 3 21 U 20 Vout 2 V 30 VBB VEE 1 12 10 10 10 0 11 Vtune t 10 340 GHz VCO 0 9 10 = 560 G H z 15 10 10 324 GHz amplifier 5 f = 560 G Hz t 0 0 J. Hacker, TSC IMS 2010 10 9 10 10 10 11 10 0 12 1 2 V Hz 3 4 ce 40 30 H Z. Griffith, TSC CSIC 2010: to be presented U m A /m m Z. Griffith 2 30 dB 204 GHz static frequency divider 21 20 10 f m ax = 218 G H z 20 10 f = 660 G H z 0 9 10 t much better results in press ... 10 10 10 Hz 11 10 12 0 0 1 2 V ce 3 InP Bipolar Transistor Scaling Roadmap emitter 512 16 256 8 128 4 64 2 32 nm width 1 mm2 access base 300 20 175 10 120 5 60 2.5 30 nm contact width, 1.25 mm2 contact collector 150 4.5 4.9 106 9 4 75 18 3.3 53 36 2.75 37.5 nm thick, 72 mA/mm2 current density 2-2.5 V, breakdown 520 850 430 240 730 1300 660 330 1000 2000 1000 480 1400 GHz 2800 GHz 1400 GHz 660 GHz ft fmax power amplifiers digital 2:1 divider 370 490 245 150 We Tb W bc Tc Fabrication Process for 128 nm & 64 nm InP HBTs Chart 17 Initial Results: Refractory-Contact HBT Process 30 110 nm emitter width 30 U 270 nm emitter width U 25 25 20 H f 21 m ax = 700 G H z G a in (d B ) G a in (d B ) H 15 A 10 je = 0 .1 1 m m x 3 .5 m m 21 20 f 15 A je m ax = 800 G H z = 0 .2 7 m m x 3 .5 m m 10 f = 370 G H z t 5 5 f = 430 G H z t 0 10 9 10 10 10 F re q (H z) 11 10 12 0 9 10 10 10 10 11 fre q (H z) Need to add E-beam defined base, best base contact technology 10 12 InP DHBTs: August 2010 4 00 GHz 1000 5 00 GHz 6 00 GHz 7 00 GHz 8 00 GHz 9 00 G Hz popular f t f m ax T e le d yn e D H B T ( f t f max ) / 2 U IU C D H B T 800 f max (G H z ) NTT DBHT 250 nm 600 (1 f t 1 f max ) 1 much better metrics U IU C S H B T 250 nm 600nm 200 PAE, associated NGST DHBT mW/ m m IB M S iG e 350 nm power amplifiers UCSB DHBT H RL D HB T Fmin , associated f clock , hence ( C cb V / I c ), U p da te d A u g 20 1 0 0 400 600 f (G H z) t 800 1000 : low noise amplifiers digital : V ite sse D H B T 200 f t f max ETHZ D HBT 110 nm 0 : f t or f max alone 200 nm 400 metrics ( R ex I c / V ), ( R bb I c / V ), (τb τc ) gain, : gain, : 670 GHz Transceiver Simulations in 128 nm InP HBT transmitter exciter Simulations @ 670 GHz (128 nm HBT) LNA: 9.5 dB Fmin at 670 GHz 30 PA: 9.1 dBm Pout at 670 GHz 35 35 20 20 30 30 10 0 receiver 660 680 S P .fre q , G H z fre q , G H z 700 720 800 820 G a in Pout 0 -8860 -6 -4880 -2 (b ) 0 0 900 2 128nm 4 0.986 (c ) free-running VCO 0 Total PLL phase noise -50 closed-loop VCO noise -100 multiplied reference noise -150 1 10 2 3 4 10 6 10 7 950 GHz Input -0.9 -0.95 -0.95 Vout, Vout_bar Vout , Vout_bar 5 10 10 10 offset from carrier, Hz 690 GHz Input -1 -1.05 -1.1 -1.15 -1 -1.05 -1.1 -1.15 197.5 10 -12 200 10 -1.2 -12 195 10 -12 Noise Figure, Conversion Gain (dB) 197.5 10 -12 time, seconds time, seconds Mixer: 10.4 dB noise figure 11.9 dB gain -8 50 -0.9 -1.2 -12 195 10 1.04 -1 0 S P .fre q , TH z fre q , TH z (a) 10 Dynamic divider: novel design, simulates to 950 GHz 3 -1 0 1.02 -1 2 8 1.001 0 P in S P .fre q , G H z fre q , G H z VCO: -50 dBc (1 Hz) @ 100 Hz offset at 620 GHz (phase 1) 3-layer thin-film THz interconnects thick-substrate--> high-Q TMIC thin -> high-density digital 5 -5 6 4 nm -1 0 840 -1 0 (a ) 10 20 10 0 1 2 8 nm 640 5 -5 0 620 n f(2 ) d B (S (2 ,1 )) 10 15 10 20 PLL single-sideband phase noise spectral density, dBc (1 Hz) 20 G a in Pout n f(2 ) d B (S (2 ,1 )) n f(2 ) d B (S (2 ,1 )) 15 30 25 20 15 10 5 0 -5 -15.00 -10.00 -5.000 0.0000 5.000 LO Power 10.00 200 10 -12 1.- THz Field-Effect Transistors (THz HEMTs) FET Scaling Laws LG Changes required to double device / circuit bandwidth. laws in constant-voltage limit: gate FET parameter gate length current density (mA/mm), gm (mS/mm) channel 2DEG electron density electron mass in transport direction gate-channel capacitance density dielectric equivalent thickness channel thickness channel density of states source & drain contact resistivities change decrease 2:1 increase 2:1 increase 2:1 constant increase 2:1 decrease 2:1 decrease 2:1 increase 2:1 decrease 4:1 width W G HEMT/MOSFET Scaling: Four Major Challenges contact regions: need reduced access resistivity channel: need higher charge density yet keep high carrier velocity gate dielectric: need thinner barriers → tunneling leakage channel: need thinner layers THz FET Scaling Roadmap Gate length Gate barrier EOT well thickness S/D resistance effective mass # band minima ft fmax fdivider source-coupled logic Id /Wg@ 200 mV overdrive nm nm nm 1 25 0.58 4.0 100 0.05 1 18 0.41 2.8 74 0.08 2 GHz 700 770 GHz GHz 810 150 mA/mm 0.54 mm *m0 high-K gate dielectrics 35 0.83 5.7 150 0.05 ? 13 2.0 53 9 0.21 1.4 37 0.08 3 0.08 3 1100 1600 2300 930 220 1400 300 2000 430 2900 580 0.69 0.95 1.4 1.8 0.29 source / drain regrowth G-L transport III-V MOSFETs with Source/Drain Regrowth 27 nm InGaAs MOSFET Regarding Mixed-Signal ICs & Waveform Generation Clock Timing Jitter in ADCs and DACs Timing jitter is quantitatively specified by the single-sideband phase noise spectral density L(f). IC oscillator phase noise varies as ~1/f2 or ~1/f3 near carrier Impact on ADCs and DACs: imposition of 1/fn sidebands on signal of relative amplitude L(f) ...not creation of a broadband noise floor. Dynamic range of electronic DACs & ADCs is limited by factors other than the phase noise of the sampling clock Why ADC Resolution Decreases With Sample Rate Dynamic Range Determined by Circuit Settling Time vs. Clock Period dynamic hysteresis metastability # bits 1 f sample t latch IC time constants→ Resolution decreases at high sample rates Fast IC Waveform Generation: General Prospects Waveform generator → fast digital memory & DAC Parallel digital memory and 200 Gb/s MUX is feasible cost limits: power & system complexity vs. # bits, GS/s Performance limit: speed vs. resolution of DAC faster technologies → increased sample rates Feasible ADC resolution: 12 SNR bits @ 4 GS/s feasible using 500 nm (400GHz) InP HBT. Feasible sample rate will scale with technology speed.. THz Transistors & Mixed-Signal ICs Few-THz Transistors Few-THz InP Bipolar Transistors: can it be done ? Scaling limits: contact resistivities, device and IC thermal resistances. 62 nm (1 THz ft , 1.5 THz fmax ) scaling generation is feasible. 700 GHz amplifiers, 450 GHz digital logic Is the 32 nm (1 THz amplifiers) generation feasible ? Few-THz InP Field-Effect Transistors: can it be done? challenges are gate barrier, vertical scaling, source/drain access resistance, channel density of states. 2DEG carrier concentrations must increase. S/D regrowth offers a path to lower access resistance. Solutions needed for gate barrier: possibly high-k (MOSFET) Implications: 1 THz radio ICs, ~200-400 GHz digital ICs, 20 GHz ADCs/DACs