Common Base Amplifier with 7- dB gain at 176 GHz in InP mesa DHBT Technology V.

Download Report

Transcript Common Base Amplifier with 7- dB gain at 176 GHz in InP mesa DHBT Technology V.

Common Base Amplifier with
7- dB gain at 176 GHz in
InP mesa DHBT Technology
V. Paidi,
Z. Griffith, Y. Wei, M. Dahlstrom,
N. Parthasarathy, M. Seo, M. Urteaga,
M. J. W. Rodwell ,
Department of Electrical and Computer Engineering,
University of California, Santa Barbara, CA 93106
L. Samoska, A. Fung,
Jet Propulsion Labs, Pasadena, CA 91109
Slide 1
Outline
•
Motivation.
•
Why Common-base?
•
Effect of layout parasitics on circuit stability and MSG.
•
InP mesa DHBT process.
•
Circuit simulations.
•
Device Results
•
G-band Power amplifier results.
•
W-band Power amplifier results.
Slide 2
Motivation and Previous Results
•
Applications for electronics in 140-220 GHz frequency band
Wideband communication systems
Atmospheric sensing
Automotive radar
•
Small signal amplifier results
6.3 dB @ 175 GHz single stage amplifier in InP TSHBT technology, Miguel et.al.,
12 dB @ 170 GHz three stage CE amplifier in InP TSHBT technology, Miguel et. al.,
6-stage amplifier with 20  6 dB from 150-215 GHz, InP HEMT, Weinreb et. al.
•
Power amplifier results
14-16 dBm @140-170 GHz with 10 dB gain in InP HEMT technology, Lorene et. al.,
12.5 dBm @90 GHz with 8.6 dB gain in TS InP DHBT technology, Yun et. al.,
14-16 dBm @65-145 GHz with > 10 dB gain in InP HEMT technology, Lorene et. al.,
Slide 3
Why mesa -InP HBTs for 140- 220 GHz
power amplifiers ?
• fmax > 400 GHz, ft > 250 GHz
• High current density > 3 mA/ m2.
• Vbr,ce0 > 6V
• Low thermal resistance.
High power density, high gain in 140-220-GHz frequency range
Slide 4
Why Common Base ?
Common Base Circuit Schematic
Input
Matching
network
Vin
Output
Loadline
Matching
network
30
U
MSG/MAG, dB
25
20
Common emitter
15
Common base
10
Common Collector
5
0
10
100
Frequency, GHz
Common base has the highest MSG/MAG.
Slide 5
Vout
RL
Base inductance
Ground
Polyimide
base
Emitter
access
Interconnect
metal
• 0.8 m base contact width
Leads to base access inductance.
emitter
• Lb ~ 3 pH for 0.8 mX12 m HBT.
0.8m each
Longer finger length results in larger base access inductance
Slide 6
Collector emitter overlap Capacitance reduction
Double-sided collector Contact
Single-sided collector Contact
base plug
base plug
base
base
Lb
Lb
interconnect metal
interconnect metal
Cce
emitter
base
N- collector
emitter
Cce
N- collector
collector
base
collector
N+ subcollector
N+ subcollector
semi-insulating InP
semi-insulating InP
Single-sided Collector contact reduces Collector to emitter overlap capacitance
Slide 7
Cce, Lb degrade MSG/MAG
base plug
base
25
Lb
Without C , L
MSG/MAG
20
ce
b
15
10
With C
ce
5
With C , L
ce
interconnect metal
Cce
emitter
base
N- collector
0
Cce
10
collector
100
Frequency, GHz
N+ subcollector
semi-insulating InP
Lb reduces MSG in 140-220-GHz frequency range.
Slide 8
b
Single-sided collector Contact improves MSG
base plug
base
30
Lb
25
MSG/MAG
Single sided collector
20
15
Double sided collector
10
5
interconnect metal
emitter
N- collector
base
amplifier designs
0
100
10
Frequency, GHz
collector
N+ subcollector
semi-insulating InP
2-3-dB improvement in MSG.
Slide 9
Mesa IC Process: overview
E
Base
Collector
sub-collector
SI InP
polymide
NiCr
metal 1
SiN
Air bridge
• Both junctions defined by selective wet-etch chemistry
• Low contact resistances
• NiCr thin film resistors s = 40  / 
• MIM capacitor, SiN dielectric.
• ADS momentum modeled CPW transmission lines
• Air bridges strap ground planes
Slide 10
Single-stage Common Base power amplifier
Objectives: 180 GHz amplifier, Psat~ 20 dBm
Approach: InP mesa-DHBTs
Simulations: ADS S-parameter, harmonic balance and momentum simulations
Circuit Schematic
Input matching network
Output loadline
match
Vin
Vout
Input matching network
Slide 11
Output loadline
match
RL
Output Large-signal Load-line match
(Simulations)
Device Model
Load-line match
Collector
Cccbx(F)
Rc,cont
Cccbx(1-F)
Rc,spread /2
Cgap
Rc,spread /2
Rcb
Cce
Ccb
Rb,cont
Base
A
Rb,spread
v
Lb
Rb,gap
C
Rex
Emitter
Circuit optimized for output power not gain
Slide 12
Single-stage Common Base power amplifier
(Simulations)
2 x 2 x 0.8 m x 12 m, AE=38
m2
•
Frequency of operation =180 GHz
•
3-dB bandwidth = 45 GHz,
•
Gain = 5.3 dB at 180 GHz,
•
Pout,sat = 20 dBm.
10
21
5
21
11
S ,S ,S
0
S
22
-5
S
11
-10
100
125
150
175
200
frequency, GHz
225
250
Slide 13
20
20
P
out
15
PAE
10
15
10
Gain
5
0
5
0
5
10
15
Input Power, dBm
0
20
PAE (%)
22
dB
S
Output Power, dBm, Gain, dB
5.3 dB at 180 GHz, 3-dB Bandwidth = 45 GHz, Saturated Pout, = 20 dBm
Two-stage Common Base amplifier
Objectives: 180 GHz amplifier, Psat~ 20 dBm
Approach: InP mesa-DHBTs
Simulations: S-parameter and harmonic and momentum simulation in ADS
Circuit Schematic
V
eb,bias
 at f
0
Input
Matching
Network
Vin
Output
Loadline
Matching
Network
Input
Matching
Network
50 Ohms
50 Ohms
 at f
0
V
cb,bias
Slide 14
Output
Loadline
Matching
Network
Vout
RL
Two-stage Common Base amplifier
(Simulations)
Frequency of operation =180 GHz
3-dB bandwidth = 45 GHz,
Gain = 8.7 dB,
Pout,sat = 19.5 dBm.
6 x 0.8m x 12 m, AE=58 m2
Power simulations at 180 GHz
Output Power, dBm, Gain, dB
21
5
11
S ,S ,S
S
10
22
dB
15
S
11
21
0
S
22
-5
-10
150
160
170
180
190
200
210
20
P
out
15
Gain
10
5
0
220
0
frequency, GHz
2
4
6
8
10
Input Power, dBm
Slide 15
12
14
Device Performance
DC characteristics of a 2 X 0.8 m X 12 m
Common-base InP HBT
RF characteristics of a 1 X 0.8 m X 8 m
HBT biased at Jc= 3 mA/m2, Vce =1.7 V
30
U
50
25
U, h dB
21
30
c
I , mA
40
20
21
15
10
f =240 GHz

Safe operating
area
10
h
20
f
5
=290 GHz
max
0
0
-2
0
2
4
6
1
8
10
100
Frequency, GHz
V ,V
CB
• Vbr = 7 V.
0.6
• ft = 240 GHz, fmax = 290 GHz.
0.4
0.3
c
I , mA
0.5
0.2
0.1
0
-2
0
2
4
V
CB
,V
6
8
• Relatively lower fmax –
• larger base mesas
• relatively poorer base ohmics.
Slide 16
Power measurement setup 170-180 GHz
Frequency
doubler
DUT
Power
meter
W-band
PA
Probe loss 170-180 GHz band ~ 2.6 dB
Variable
attenuator
BWO
Power
Source
WR-5
Picoprobe
W-band
Power
amplifier
Schottky
Doubler
W-band
Power
meter
Slide 17
WR-5
Picoprobe
Calorimeter
DUT
Power measurement setup 150 GHz
DUT
Gunn Oscillator
Calorimeter
Var Attn
Probe loss 150 GHz band ~ 3.0 dB
150 GHz
Gunn
Power
Source
WR-5
Wafer Probe
WR-5
Wafer Probe
Calorimeter
DUT
Variable
attenuator
Slide 18
176 GHz single-stage Power amplifier
7- dB gain at 176 GHz.
3-dB bandwidth = 23 GHz.
Pout = 8.7 dBm with 5 dB associated
power gain at 172 GHz.
2 x 0.8m x 12 m, AE=20 m2
Bias conditions Ic = 30 mA, Vcb= 1 V
10
Power measurements at 172 GHz
Bias conditions Ic = 40 mA, Vcb= 2 V
S
Gain, dB Output Power, dBm
11
22
5
S
22
0
S
21
11
-5
-10
140
150
160 170 180
frequency, GHz
190
200
Slide 19
8
10
Gain
6
5
Output Power
4
0
-5
-10
-15
PAE
2
0
-10
-5
0
Input Power, dBm
5
PAE (%)
S , S , S , dB
21
176 GHz single-stage Power amplifier
Maximum Output Power, dBm
10
8
Maximum output power
6
4
Associated power gain
2
0
170
171
172 173 174 175
Frequency, GHz
176
177
At 172 GHz 7.53 mW output power with 5 dB associated gain.
Maximum power measured = 8.37 mW at 176 GHz
Slide 20
176 GHz two-stage Power amplifier
7- dB gain at 176 GHz.
Pout = 8.1 dBm with 6.3 dB associated
power gain at 176 GHz.
Saturated Pout = 9.1 dBm
4 x 0.8m x 12 m, AE=38 m2
Power measurements at 176 GHz
Ist stage Ic = 40 mA, Vcb= 2 V
IInd stage Ic = 51 mA, Vcb= 1.8 V
Ist
stage Ic = 25 mA, Vcb= 1 V
IInd stage Ic = 30 mA, Vcb= 1 V
S
22
21
5
S
11
22
21
0
-5
S
11
-10
140
150
160
170
180
190
5
10
200
Output Power
4
8
Gain
6
3
4
2
2
1
0
0
-6
Frequency, GHz
Slide 21
PAE
-4
-2
0
2
4
Input Power, dBm
6
8
10
PAE (%)
S , S , S dB
10
Gain, dB, Output Power , dBm
15
176 GHz two-stage Power amplifier
Gain
6
Output Power
10
4
5
2
PAE
PAE (%)
Gain, dB, Output Power, dBm
15
0
0
-5
-10
-5
0
5
Input Power, dBm
10
At 150.2 GHz 10.3 dBm Pout with 3.4 dB associated gain.
Slide 22
84 GHz single-stage Power amplifier
6.5- dB gain at 84 GHz.
Pout = 32.4 mW with 4 dB associated
power gain at 84 GHz.
4 x 0.8m x 12 m, AE=38 m2
S
0
22
21
11
22
5
21
-5
S
11
-10
75
80
85
90
95
100
Frequency, GHz
105
110
20
16
14
P
out
12
PAE
10
10
8
5
6
Gain
0
4
0
Slide 23
15
2
4
6
8
Input Power, dBm
10
12
PAE (%)
S , S , S , dB
10
S
Power measurements at 84 GHz
Bias conditions Ic = 56 mA, Vcb= 2.2 V
Gain, dB, Output Power, dBm
Bias conditions Ic = 37 mA, Vcb= 1 V
Accomplishments
Design and fabrication of W-band (75-110-GHz) G – band
(140-220-GHz) power amplifiers in InP mesa DHBT
technology
7-dB at 176 GHz with a single-stage common-base amplifier.
Obtained 8.77dBm output power with 5-dB associated power
gain at 172 GHz.
Obtained 32 mW at 84 GHz.
This work was supported by the ONR , JPL , DARPA (USA).
Slide 24