Transcript მათემატიკა
საქართველოს აგრარული უნივერსიტეტი
გიორგი მიხელიძე
ფუნქცია:
◦ X და Y სიმრავლეებს შორის შესაბამისობას, როდესაც X სიმრავლის
ყოველ ელემენტს Y სიმრავლის ერთადერთი ელემენტი შეესაბამება,
ფუნქცია ეწოდება
Y
ABC
X
abcde
f
ფუნქცია ამყარებს შესაბამისობას X და Y სიმრავლეებს შორის
რამიე წესით (ფორმულით)
◦ Y=f(x) - ვგულისხმობთ, რომ X და Y დაკავშირებულნი არიან f წესით.
მაგალითად, y=2+3x ამ შემთხვევაში f წესი არის 2+3x, ან f(x)=2+3x
3
2+3∙3
11
◦ X-ს დამოუკიდებელ ცვლადს უწოდებენ, ხოლო y-ს დამოკიდებულს
ფუნქცია ზრდადია, თუკი x-ის გაზრდა იწვევს y-ის ზრდას, ანუ
ნებისმიერი x2>x1 რიცხვებისათვის f(x2)>f(x1)
წრფივი ფუნქცია: y=a+bx
◦ y=bx როდესაც a=0
◦ Y=a
როდესაც b=0
ორივე ზემოთ მოცემული ფუნქცია წრფივია!
თუ b დადებითია, y=a+bx ფუნქცია ზრდადია, ხოლო თუ b
უარყოფითია, ფუნქცია კლებადია
y=bx (a=0) აღნიშნული ფუნქციის გრაფიკი გადის კოორდინატთა
სათავეზე, რადგან როდესაც x=0, y აგრეთვე ნულის ტოლია, ანუ (0;0)
წერტილი მოცემულ წრფეზე მდებარეობს
y=a (b=0) მოცემული ფუნქციის გრაფიკი X ღერძის პარალელურია
რატომ?
y=a იგივეა რაც y=a+0∙x, შესაბამისად x-ის ზრდა ვერ გამოიწვევს y-ის
ზრდას
რა მოხდება, თუ a გარკვეული სიდიდით
გაიზრდება?
◦ განვიხილოთ ფუნქცია y=2+3x (1), წრფე Y ღერძს
კვეთს წერტილში (0;2)
◦ თუკი a 1 ერთეულით გაიზრდება y=3+3x (2) ახალი
გადაკვეთის წერტილი იქნება (0;3)
◦ (1) - როდესაც x=1, y=5; x=2, y=8
◦ (2)- როდესაც x=1, y=6; x=2, y=9
x-ის თითოეულ სიდიდეს y-ის 1-ით მეტი სიდიდე
შეესაბამება => წრფე პარალელურად ზემოთ
გადაადგილდება
რა მოხდება, თუ b გარკვეული სიდიდით
გაიზრდება?
◦ y=a+bx
დავუშვათ b 2-ჯერ გაიზარდა:
◦ y=a+2bx ახლა x-ის 1 ერთეულით ცვლილებას 2ჯერ მეტი ეფექტი აქვს y-ზე!
წრფის დახრის
კუთხე გაიზრდება
წრფის აგება
◦ იმისათვის რომ ვიპოვოთ წრფის ფუნქცია ან ავაგოთ მისი
გრაფიკი, საჭიროა ვიცოდეთ:
2 წერტილი ან
1 წერტილი და დახრის კუთხე
თუ ცნობილია ფუნქცია (მაგ. y=2+3x), მისი გრაფიკულად
გამოსახვა მარტივია. მოსახერხებელი მეთოდი - ვიპოვოთ X და Y
ღერძების გადაკვეთის წერტილები და შემდეგ გავავლოთ ხაზი
◦ Y ღერძის გადაკვეთის წერტილში x=0
y=2+3∙0=2 x=0 y=2
◦ X ღერძის გადაკვეთის წერტილში y=0
0=2+3x x=-2/3
ფუნქციის პოვნა 1 წერტილის და დახრის
კუთხის მიხედვით
◦ ფორმულა: y-y1=b(x-x1) სადაც x1 და y1 წერტილის
კოორდინატებია, ხოლო b დახრის კუთხეა
მაგალითი: დავუშვათ ვიცით, რომ დახრის
კუთხე არის 2, ხოლო ერთ-ერთი წერტილი
რომელზეც წრფე გაივლის არის (3;1)
y-y1=b(x-x1) => y-1=2(x-3), საიდანაც y=2x - 5
ფუნქციის პოვნა 2 წერტილით
◦ ჩვენ შეგვიძლია დახრის კუთხე დავთვალოთ შემდეგი
ფორმულით:
𝑦2− 𝑦1
𝑏=
𝑥2− 𝑥1
◦ დავუშვათ დახრის კუთხე არის 2. ეს იმას ნიშნავს რომ x-ის 1
ერთეულით ზრდა გამოიწვევს y-ის 2 ერთეულით ზრდას, ანუ
ნაზრდების შეფარდება არის 2/1. ზემოთ მითითებულ ფორმულაში
მრიცხველი გვიჩვენებს y-ის ნაზრდს, ხოლო მნიშვნელი x-ის
ნაზრდს
◦ მას შემდეგ რაც ვიპოვით დახრის კუთხეს, ჩვენ შეგვიძლია ვიპოვოთ
ფუნქცია დახრის კუთხისა და 1 ნებისმიერი წერტილის მიხედვით
მაგალითი
◦ მოცემულია 2 წერტილის კოორდინატები (-5;7) და
(4,16)
◦ დახრის კუთხე b=(16-7)/(4- (-5))=9/9=1
◦ y-y1=b(x-x1) => y-7=1(x+7), საიდანაც y=12+x
წრფივი განტოლების ამოხსნა
◦ წრფივი განტოლება ეწოდება a+bx=0 სახის
განტოლებას. მას აქვს ერთადერთი ამონახსნი:
x=-a/b (a და b არ უდრის 0-ს)
განტოლება შესაძლებელია ამოვხსნათ გრაფიკის
მეშვეობითაც. მისი ამონახსენი არის Y ღერძთან
კვეთის წერტილი
თუ b=0, განტოლებას ამონახსნი არ აქვს, ხოლო თუ
a=0 ნებისმიერი რიცხვი არის განტოლების ამონახსნი