No Slide Title - The Six International Conference of ESES 2014

Download Report

Transcript No Slide Title - The Six International Conference of ESES 2014

‫بسم هللا الرحمن الرحيم‬
‫َ‬
‫َ‬
‫َ‬
‫ْ‬
‫َ َ ْ َ َ َ َّ ْ ُ ْ‬
‫ُ‬
‫َّ َ‬
‫َّ ُ َ ُ‬
‫َ‬
‫َ‬
‫َ‬
‫ْ‬
‫ْ‬
‫ْ‬
‫َ‬
‫َ‬
‫َ‬
‫ْ‬
‫َ‬
‫ْ‬
‫َ‬
‫َّ‬
‫ات ِلك ِ ِل صب ٍار‬
‫“ ألم تر أن الفلك تج ِري ِفي البح ِر ِب ِنعمت الل ِ ِه ِلي ِريكم ِمن آيا ِت ِه ِإن ِفي ذ ِلك ِلي ٍ‬
‫َ ُ‬
‫شكو ٍر ” صدق هللا العظيم (لقمان – ‪)31‬‬
‫تقييم جيوبيئى لمحور تنمية منطقة قناة السويس – المخاطر‬
‫ مصر‬- ‫ اقليم القناة وسيناء‬- ‫والفرص‬
Geoenvironmetal Impact Assessment of Suez Canal
Corridor Development Area, Challenges and
Opportunities, Suez Canal and Sinai Province, Egypt
Geriesh, M.H., El-Rayes, A.E., Kaiser, M.F., Mansour, B. MH., and Abd El-Aleem, M.
Geology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
ISMAILIA, 2014
Talk Outline
 Location, Problem Definition and aim of work
 Prevailing forms of geoenvironmental hazards
 Physiography and Geology
 Tectonic framework & Seismic activities
 Hydrogeologic setting
 Water Quality and Hydro-Chemical Facies
 Hazards of water logging , Sea shore erosion and soil salinization

Challenges of flash flood hazards
 Challenges of water resources pollution
 Management - Conclusions
‫‪Location‬‬
‫البحر المتوسط‬
‫منطقة الدراسة‬
‫شبه جزيرة سيناء‬
‫االسماعيلية‬
‫‪Isthmus Stretch‬‬
‫قناة السويس‬
‫‪The Suez Canal Corridor Area Project‬‬
Project aim
• The project aims to increase the role of the Suez
Canal region in international trading and to
sustainably develop the Suez Canal Corridor area
in a safe environment.
Aim of work
The present work is an integral study
environmental analysis and management to:
of
1- Asses prevailing geoenvironmental hazards with
an emphasis on problems associated with soil
desertification, land erosion, water logging, tectonic
activity, pollution and flash flood hazards.
2- Propose adequate and economic safe designs
to mitigate the prevailing geoenvironmental
hazards.
‫‪Description of the new Suez Canal‬‬
‫‪Route‬‬
‫من البحيرات المرة جنوبا وتنتهى قرب‬
‫يبلغ طول القناة الجديدة حوالى ‪72‬كم تبدأ‬
‫بحيرة البالح شماال مرورا بتلك البحيرات مع تعميق المجرى المالحى الحالى‬
‫والجديد معا الى مايقرب من ‪ 24‬مترا ليسمح للسفن ذات الحموالت الكبيرة بالمرور‬
‫فى القناه فى االتجاهيين معا‪..‬‬
‫)‪New canal length 72 km (35 km dry and 37 km wet drilling sections‬‬
‫‪Shale‬‬
‫‪New canal route‬‬
Prevailing forms of geoenvironmental hazards
1
1
2
3
Sinai
2
3
Northern Sector
4
4
5
5
6
7
water logging and soil salinization
along the middle and northern
irrigated areas
6
8
9
11
7
2
4
6
8
10
10
F8
12
Bitter Lack
13
14
Southern Sector
Fayed
16
15
F10
F9
Auger hole
Infiltration test
Infered fault
Losses of fertile soil and great amount
of water due to water logging and high
evaporation
Risky level of water pollution and
land degradation due to miss land
use planning strategy.
Geology & Physiography
the area is covered by
Quaternary
deposits
with variable thickness.
K = 10
Hydrography and suitability of tunnels construction
Hydrographic basins of the project area
‫‪Tectonic framework & Seismic activities‬‬
‫التراكيب الجيولوجية االقليمية المتقاطعة والموازية لمجرى‬
‫قناة السويس الجديدة‬
‫خريطة مراكز هزات الزالزل‬
‫بمنطقة االقليم (معدل –‬
‫ابوالعلى ‪)1994‬‬
‫‪N‬‬
‫‪Magnitudes (Mb):‬‬
‫;‪≤ 3‬‬
‫‪3.1 - 4.4‬‬
‫‪≥ 4.5‬‬
‫موقع آمن النشاء االنفاق‬
‫موقع غير مستقر ويحتاج‬
‫لدراسة دقيقة‬
‫‪29/04/74 02/01/87‬‬
‫‪29/03/84‬‬
‫‪12/10/92‬‬
‫مراكز الهزات االرضية و التراكيب الجيولوجية االقليمية المتقاطعة والموازية لمجرى قناة السويس الجديدة من خالل الرصد المغناطيسى الجوى‬
Hydrogeological cross-section parallel to the canal course
Ion concentrations in epm
200
TDS in ppm
9870
160
Ca
120
HCO3
SO4
9120
Mg
5712
5120
80
3814
Na
40
Cl
1560
1560
1195
1095
W 74
W83 W84
1640
1720
0
W 82
Depth relative to sea level
200
W 75
W 79
W56
W57
W 62
W 68
W 65
Wadi Tumilat
100
Ismailia Canal
WT
0
WT
El-Manzala
Lake
Holocene aquitard
discharge zone
-100
-200
Pleistocene aquifer
-300
-400
0
-500
5
10
15
20 km
Pliocene aquiclude
Hydrogeological cross-section parallel to the
eastern canal bank
Meters above sea level
50
South
North
Sinai Canal
25
12 11
+
10
9
8
WT
0
5
2
3
25
50
75
S'
Explanation
Marly Limestone
Mud
Calcareous loamy sand
Eolian sand
Gravelly sand
Calcareous loam
Screen position
Infered fault
0
5
10 km
S
Ion concentrations
15830
300
200
Na
Cl
7400
100
4112
1492
2382
1720
0
W 20
W 67 W61
El-Qantara
El-Matria
W.T
Suez Canal
Holocene aquitard
200
Pleistocene aquifer
30° 00'
400
600
31° 00'
32° 00'
C
lioce
ne a
quic
lude
100
elt
a
Present-day shore line
80
n
Asthmus basi
200 km
ic
tit
n
an
a
i
h
s
.P
de
W
en
6441
.M
W
6122
ic
c
nit
i
a
sa
HCO3
.T
elu
P
W
.
Ca
W. Sebenitic
ic
op
an
.C
W
W.
D
31°
00'
100
D
c
800
1000
W
4748
umilat
W. El-T
Mg
SO4
Na
Cl
60
2622
2478
30°
00' 0
TDS in ppm
40
20
-0 ‫تتواجد المياه الجوفية بمنسوب يتراوح مابين‬
‫ م من سطح البحر وعلية فان العمق لسطح‬1.0
‫المياه الجوفية يعتمد اعتمادا رئيسيا على تضاريس‬
‫وجيومورفولوجيا سطح االرض المار به مجرى‬
.‫ مترا بطول القناه‬15-5 ‫القناه والذى يتراوح بين‬
Mediterranean
Sea
P
W
.A
tri
bi
ti
meters below sea level
W 68
Hydrogeologic setting
Abadia
0
Ion concentration in epm
W 66
East
Mahmoudia
32°
00'
W40
W 42
W45
West
200
1669
1215
Memphis
50 km
1674
High Neogene ridges
1120
440
2711
‫ملوحة المياه متفاوتة بين العذبة والمالحة طبقا‬
‫لنوع الرواسب الحاملة وعمق المياه من سطح‬
.‫االرض‬
Nile
0
East
West
Wadi El-Tumilat
Sweet Suez Canal
Meters above sea level
El-Manaief Canal
25
+
0
29 156
123
92
93
88 50
1
4
Suez Canal Route
Qm
50
Explanation
100
11
Qt
-
25
75
82
Qt = Tumilat aquifer
Qm = Quaternary main aquifer
0
Evaporitic loams
Mud
Eolian sand dunes
Gravely sand
5
10 km
screen position
Fig. (13): Hydrogeochemical cross sections along the coastal zone (A, present work)
and Wadi
old Nile branch
(B, after Geriesh,
2000).
Buried river
NileEl-Tumilat
channel
crossing
the canal
route from
west to east
‫زيادة النشاط السكانى والتوسع الزراعى والرى‬
‫بالمنطقة الشرقية لقناة السويس يساعد على ظهور‬
‫البرك والمستنقعات الحديثة نتيجة الرتفاع منسوب‬
‫المياه الجوفية ووجود طبقات طينية تحت التربة‬
‫الرملية المروية مما قد يلعب دورا هاما فى تكثيف‬
‫عمليات التكسية وحوائط الحماية للمجرى الجديد‬
‫وأخذ ذلك فى االعتبار عند اقامة مشروعات‬
.‫التنمية والتوسع الزراعى بالمنطقة‬
Alexandria
Idiku Lake
Marute Lake
Rosetta Branch
Distribution of the Holocene and Pleistocene hydrochemical facies
Holocene Aquifer
Ismailia
30 30 N
31 00 E
30 00 E
Tanta
Suez Canal
31 00 N
32 00 E
Mediteranean Sea
Damieta
Rosetta
Scale
(A)
Alexandria
legend
Idiku Lake
Ca-HCO3
Cairo
0 10 20 30 Km
____________
Pleistocene Aquifer
Na-HCO3
Na-mix
NaCl+
NaCl- (Ca>Mg)
NaCl- (Mg>Ca)
Marute Lake
31 00 N
31 00 E
Suez Canal
Rosetta Branch
30 00 E
Tanta
Ismailia
32 00 E
Mediteranean Sea
Damieta
Rosetta
Alexandria
30 30 N
Idiku Lake
Marute Lake
Scale
(A)
legend Ca-HCO3
Cairo
Na-HCO3
Na-mix
NaCl+
0 10 20 30 Km
____________
NaCl- (Ca>Mg)
Suez Canal
Rosetta Branch
31 00 N
Tanta
Ismailia
NaCl- (Mg>Ca)
30 30 N
31 00 E
30 00 E
32 00 E
Mediteranean Sea
Rosetta
Damieta
Ancient groundwater flow to
Sinai
Scale
(B)
Cairo
0 10 20 30 Km
____________
Hydraulic balance along the new canal route
Discharge zone
Isthmus Stretch
West
50
East
Suez Canal
New
Discharge zone courses
Old
0
masl
Aquitard
Return flow direction
Return Flow direction
Clay
-100
Pleistocene aquifer
Miocene limestone
0
5
10 km
Fault
‫قطاع هيدروجيولوجى عمودى على قناة السويس بمنطقة سرابيوم‬
Results of hydrochemical and stable isotope analyses
Well
No.
ID
NO3
(mg/l)
X
Y
m
Late.
N
Long., E
Total
Depth,
TDS
(mg/l)
Ion concentration in mg/l
Ca
1
W45
105
30 47
57.40
32 21 44.53
32
2
W51
35
30 45
59.66
32 22 26.27
11
3
W6
20
30 42
31.78
32 23 00.1
14
4
W5
100
30 39
47.29
32 23 31.82
6
5
W44
90
30
5606.
76
32 30 03.18
16
6
W39
10408
5722
6074
2862
5012
-2.9
Mg
Na
HCO3
2H
SO4
Cl
440
232
3085
142
2165
4342
21.0
70
108
1955
171
534
2870
9.1
324
234
1670
116
446
3273
50
38
922
244
475
1124
112
48
1512
120
1190
2020
-2.9
-2.9
18O
‫ نتائج التحاليل‬:)1( ‫جدول‬
‫الكيميائية للمياه الجوفية شرق‬
‫المجرى المالحى الجديد‬
3.46
1.76
-2.29
-2.9
-2.9
-2.9
-2.9
-27.5
-2.9
-2.9
No
We
ll
ID
Ag
Zn
B
Ba
Cd
Co
Cr
Cu
Fe
In
K
Li
Mn
P
Pb
Sr
Th
Tl
3
W6
< 0.002
0.005
0.373
0.084
<
0.002
< 0.002
0.021
< 0.003
0.001
<
0.011
6.425
0.012
0.001
< 0.011
<
0.007
1.329
0.009
< 0.011
4
W5
< 0.002
0.89
8
0.846
0.038
<
0.002
< 0.002
0.031
< 0.003
0.015
<
0.011
24.280
0.040
0.001
< 0.011
<
0.007
9.769
0.02
6
< 0.011
5
W44
< 0.002
0.019
1.590
0.029
<
0.002
< 0.002
0.019
< 0.003
0.001
<
0.011
23.090
0.038
0.003
< 0.011
<
0.007
6.118
0.016
< 0.011
‫نتائج تحاليل‬
:)2( ‫جدول‬
‫العناصر الشحيحة للمياه الجوفية‬
‫شرق المجرى المالحى الجديد‬
)‫لتر‬/‫(التراكيز بالميكروجرام‬
Hydrochemical profiles along the new canal route
(mg/l
).
Distributions of heavy metals parallel to the eastern side of Suez Canal
0.04
0.03
0.02
Th
0.01
Cr
0
North
W6
W5
W44
South
Recent water
30
%° SMOW
20
10
Old water
2H
0
ID
W45
W51
W6
W5
W44
18O
W39
-10
-20
-30
TDS (mg/l)
12000
North
South
10000
8000
6000
4000
2000
0
ID
W45
W51
W6
W5
W44
W39
Thorium distribution along the eastern side of the Suez Canal Route
Distributions of radioactive minerals (Thorium)
along the eastern side of Suez Canal
0.03
0.025
(mg/l).
0.02
MCL
Th
0.015
0.01
0.005
0
North
W6
W5
W44
South
19
Hazards of water logging and soil salinization
‫ من‬%30 ‫فاقد عن طريق البخر (حوالى‬
‫الموارد المائية المتاحة‬
cracks
Soil salinization
Desertification
Water losses accedes 2 billion cubic
meters/year
Wetland covers increased in surface area due to various processes occurring
on the El-Tina plain including a sea / groundwater level rise and land
subsidence
1984
2014
Supervised classification for 1984 is seen in (A) and for 2014 in (B) on the El-Tina plain (red
color indicates wetlands)
Water logged areas increased from 4% (25km2) at 1984 to 28% (180km2) of ElTina plain area at 2014 (before and after El-Salam Canal construction)
Increase of water logged areas from 1987 to 2012
along the middle sector
The wetland areas
increased from 56
km2 in 1987 to 150
km2 in 2012
22
Shore erosion along El –Tina Mediterranean shore line (1984-2003)
23
Field verifications, collection of surface water samples, digging of auger
holes, collection of soil samples and measuring Ec and PH of samples.
Water logging hazards along the northern sector
25
Changes of groundwater levels and salinity along the Suez Canal
during the last two decades
Increase of groundwater level
Changes of groundwater levels in some wells
during the last two decades
Changes of groundwater salinity in some
wells during the last two decades
Predicted changes of water logging during the next two
decades along the middle sector
18
16
130
120
14
Ground elevation in masl
110
12
10
8
6
100
90
80
non-measured
70 (mountainous region)
60
50
40 non-susceptable soil
(good drainable soil)
30
20 moderately susceptable
(need good drainage system)
10
Highly susceptable area
0
4
-10
2
Bit
ter
La
ck
0
2
4
6
8
10
12
Km
Proposed dewatering design to manage water logging in the project area
Cross section of dewatering
design
NW
Gravel Pack
15
Perforated Tube
Collecting sump
Collecting Tube
10
SE
Submersible Pump
To the nearest Drain
5
0
5
10
15
0
500
1000m
LEGEND
Gravely Sands
(Main Aquifer)
Evaporitic Loams
(Aquitard Layer)
Loose Sands
(Perched Aquifer)
‫قطاع رأسى يوضح احد المصارف المغطاة المقترحة وتأثيرة على خفض مناسيب المياه الجوفية بمناطق الرشح شرق القناه‬
G.S
W.T
X
Impermeable layer
Cross - section of the proposed underground
drinage design.
29
Success implementation (case study) of the proposed
design in urban areas, west of the canal route
Challenges of flash floods along the northern west Gulf of
Suez Industrial region
150 million cubic meters of
runoff expected to cross the
area per one rainfall event
(48mmlday).
Wadi Ghewabah hydrographic
basin, 3000 km2
31
Deficiencies of the existing dam maintains and flash
flood mitigation
32
‫‪Flash flood hazards, risk map‬‬
‫وادى غويبة درجات‬
‫خطورة السيول بالوادى‬
‫ومنابعه الفرعية‬
‫فاقد عن طريق السيول‬
‫‪33‬‬
Proposed flood control measures
Locations of dams and
flood
control
structures at Wadi
Ghewaba, South west
Gulf of Suez
34
Capacity of the proposed flood control measures
Dam efficiency
to
mitigate
floods in Wadi
Ghewaba area
Storage capacity
increased from
2.9 to 11 million
m3/one rainfall
event
Proposed runoff harvesting and groundwater recharge, models
36
Proposed flood mitigation canal along the
downstream areas
Mitigation
canal
increases
flood control
efficiency by
3.8 million
m3/one
rainfall event
Challenges of water resources pollution in the project area
Pollution threats along El-Salam Canal
39
Increases of salts content of the transported El Salam Canal water to
the eastern side of Suez Canal Route
Cl
Sodium Absorption Ratio
Na
13
12
11
10
9
8
7
6
Sample No.
5
4
3
2
‫‪Sources of water pollution of El-Timsah lake‬‬
‫مخاطر تلوث القناة والبحيرات‪:‬‬
‫‪ -1‬فقد كمية كبيرة من مياه النيل سدى‬
‫‪ -2‬القضاء على الثروة السمكية‬
‫‪ -3‬تقليل فرص العمل للصيادين‬
‫‪ -4‬ضرر مباشر على النشاط السياحى‬
‫‪ -5‬انتشار العديد من االمراض‬
‫‪ -6‬زيادة احمال الترسيب الغرينى‬
‫والعناصر السامة بقاع البحيرات‬
‫والقناة‬
‫‪Discharge of 1.3 million m3/day of polluted drain‬‬
‫‪water to the canal route‬‬
‫‪Timsah Lake‬‬
Sources of water pollution of El-Timsah lake
Algae and Nile flowers
Death of fishes
‫اذدهار الطحالب وورد النيل‬
‫اسماك نافقة‬
Sources of water pollution of El-Timsah lake
Swimming in polluted water
‫مياه صرف‬
)‫ على الشواطىء‬%60 ‫(نسب الخلط لمياه المصرف مع بحيرة التمساح تصل الى‬
Sources of water pollution of Sinai Canal
Solar energy plates
Recharge basin
Pre- filter
Control weir
1
Distribution pipe
600m
2
Pump
Slow
sand
filter
3
Tile drain
To the plant
800m
Flow direction
supply canal
Proposed design for water purification in the project area
Cross-section of the proposed design
Recharge basin
To the plant
Pre- filter
Slow sand filter
1
2
Flow direction
3Tile drain
Multi filtering water purification model
46
CONCLUSION
Data integration and analysis indicate that the area is under
threats by five types of geoenvironmental hazards which are;
 Water logging and soil salinization along the middle and
northern newly irrigated areas;
 flash floods hazards along the northwestern Gulf of Suez
industrial area;
 moderate to low seismic activity along the canal main course;
 pollution threats for both saline and fresh water resources;
land subsidence
and
Mediterranean coastal area.
degradation
along
the
northern
47
CONCLUSION
The area witnessed a rapid agricultural development in the past three
decades, and the environmental changes were very remarkable
therefore, the present study gives some applicable mitigation
measures for the predicted hazards.
The seismic activity hazard should be taken into consideration during
the selection of tunnel sites, especially those proposed for the
southern parts of the project area.
In conclusion, the project area could be ranked from the geotechnical
point of few as medium to low risk ranked area, therefore, the
proposed mitigation measures could easily mange most of these
prevailing hazards.
48
Thank you