Transcript Document

제7장
주식시장, 합리적 기대이론 및
효율시장 가설
이 장에서는 주가 결정을 설명하는 이론을
살펴보고 정보가 어떻게 주가에 반영되는
지를 논의한다.
2012 © B. Lee
목차
1. 서론
2. 배당가치 모형(1기모형, 일반모형,고든모형)
3. 비율 접근법(PER, PBR, EV/EBITDA 등)
4. 시장의 유가증권 가격 결정
5. 가치평가상의 오류 이유
6. 합리적 기대이론
7. 효율시장 가설의 증거
8. 결론
9. 다른 시장에서의 합리적 기대에 대한 증거
10. 부록 : 미국증시추이, 랜덤워크란?
2
서론
우선 아래 사실들을 하나씩 음미해 보자.
• 주주(stockholder)는 주식회사의 소득과 재산에 대한
“잔여재산 청구권자(residual claimants)”이다.
도산 시 다른 청구권이 모두 행사되고 난 이후
잔여분을 수령할 수 있는 자
☞ 이러한 이유 때문에 부도 상황이 시장에 알려지는 순간
투매가 일어나면서 주가는 수직 하락하는 것이 보통임.
☞ 부도로 인해 회사정리 결정이 내려진다면 그것은 곧
주주의 몫인 회사의 순자산가치(자산 – 부채)가 거의
남아있지 않은 상태임을 뜻함. 즉, 변제우선 순위에 따라
체불임금, 세금 및 공과금 미납액, 근저당권 가진 은행
등 채권자의 채권, 기타 일반채권자들의 채권 등을 모두
갚고 나면 주주에게 돌아갈 잔여분이 거의 없다는 것임.
3
사례탐구: 베어스턴스 부도위기와 주가 폭락
Bear Stearns
▫ 붕괴위기에 직면한 미국 5대 투자은행 베어스턴스는
2008년 3월 16일(일), 300억불의 공적자금 투입을
약속한 연방준비제도이사회(FRB)의 중재로 JP모건에
인수됨.
4
< 베어스턴스의 주가추이 >
$
150
100
50
150
100
50
2004
2005
2006
2007
2008
백만 주
▫ 2007년 한 때 $170를 넘나들던 베어스턴스의 주가는
약세행진을 거듭하다 인수협상 진행 당시 순식간에 $5
아래로 폭락하였음.
5
• 그러나 회사가 정상적으로 꾸려지면서 이익을 낼 경우
주주들은 배당(dividend)의 형태로 이득을 누릴 수 있으며
배당의 상한선은 정해져 있지 않음.
• 주식보유에 따른 현금흐름(cash flow)의 원천:
① 배당(dividends)
회사의 순이익금 중 주주총회의 의결을 거쳐 주주에게
지불되는 금액
☞ 배당기준일 (결산 월 마지막 날)까지 주식을 보유해야
배당권리가 주어짐.
② 매도가격
매도가격 > 매입가격: 유입현금흐름
매도가격 < 매입가격: 유출현금흐름
6
참고로….
◈ 주식 투자수익률 ◈
어떤 투자자가 주식 100주를 주당 2,000원에 사서
1년 후 주당 2,400원에 팔았다고 해 보자. 보유
기간 중에 주당 200원의 배당금을 받았다면
이 투자자의 주식수익률은?
배당수익률(ic)
RET 
D 1  P1  P0
P0


D1

P0
200  2400  2000
자본이득률(g)
P1  P0
P0
 30%
2,000
사후적으로 요렇게 계산이 되지만 현재 시점에서는
D1을
예측하기 어렵고 특히 P1은 ‘귀신도 모른다’는 것이
문제…..
7
참고로….하나 더. 늘…투자, 투자 하는데…..
◈ 투자와 투기 ◈
우선, 경제학에서의 정의를 보면:
투자(投資: Investment): 자본재(생산설비, 기계류 등)
를 구입하는 행위.
투기(投機: Speculation): 가격이 앞으로 상승할 것
이라는 기대 하에서 재화를 구입하는 행위
투자론에서의 개념구분:
투자: 미래 불확실한 수익에 돈을 거는 행위. 단,
충분한 정보를 토대로 위험감수 대가에 대한
합리적 기대에 따라 의사결정을 함.
투기: 미래의 불확실한 수익에 돈을 걸지만 비합리적
이고 막연한 고수익 기대에 따라 의사결정을 함.
도박: 오로지 운(luck)에 의존해 돈을 거는 행위. 자신의 운에
대한 믿음을 토대로 매우 낮은 확률에 베팅을 함.
8
내친 김에 비교해 보면….
◈ 저축, 투자 그리고 투기 ◈
개인의 재무행위 비교
저축: 소득 중에서 꼭 필요한 데만 소비하고 일부를
남기는 행위. 또는 남긴 돈을 현금, 예금, 적금
등 원금손실이 없는 방법으로 모아 나가는 행위
투자: 저축한 돈을 저축보다 더 큰 수익을 얻고자
가격변동성이 있는 주식, 채권, 부동산 등에
투입하는 행위. 원금손실 가능성 존재
투기: 단기간의 급격한 가격변동을 기대하고
무모하게 큰 수익을 얻고자 사고 파는 행위.
원금 손실 가능성이 그만큼 더 큼.
☞ 저금리/경기안정 & 금융안정 시기: 저축중심  투자중심
고금리/경기불안 & 금융불안 시기: 투자위축, 저축으로 회귀
9
• 주식시장은 수요와 공급에 의해 가격이 결정되는
경쟁시장(a competitive market)임.
• 주식거래자들은 나름대로의 주식에 대한 가치평가를
토대로 사고 파는 것인데…..그들의 ‘가치평가 추정치’
(estimated valuations)는 도대체 어디서 나오는 것일까?
자산 가치평가의 기본원리
(basic principle of asset valuation)
투자의 현재가치
= 미래 현금흐름의 현재가치
• 우선 배당과 매도가격의 예측치를 토대로 현재가치를
계산하는 이론적 가치평가 접근을 시도해 보고… 아울러
수익실적, 기업가치 등에 비해 현재 시장가격이 적정한 지
판단하는 재무제표적 접근법을 살펴보기로 한다.
10
1기 배당가치 모형(One-Period Valuation Model)
• 1기간(1년) 동안만 주식에 투자하는 것으로 가정
• 주식의 가치(즉, “적정가격”)는 배당과 기대 매도가격의
현재가치에 달려있다.
P0 
D iv1
(1  k e )

P1
(1  k e )
(1)
P0 = 현재가격, P1 = 연말 가격,
Div1 = 연말 배당금(dividend)
ke = 주식투자에 대한 요구 수익률
▫ 다른 자산 대신 주식에 투자하기로 결정하는데 요구되는
최소한의 수익률. 국채와 같은 기준 자산의 수익률 수준에
주관적인 위험프리미엄이 보태진 수준에서 결정됨.
11
▫ 미래의 배당과 매도가격 모두 불확정상태이므로 그에
따른 위험을 높게 인식하는 사람일수록 더 높은 위험
프리미엄이 보태져 요구수익률은 더 높아짐.
• (1)식에 따르면 아래의 경우 현재 가치가 상승한다.
► 연말 배당금이 상승할 것으로 기대될 때
► 연말 매도가격이 상승할 것으로 기대될 때
► 주식투자에 대한 요구 수익률이 하락할 때
12
◈ 현재 $50에 거래되는 인텔 주식을 고려해보자. 투자
분석가들이 1년 후 이 주식의 가격이 1주당 $60가 될
것으로 예측하고 회사는 주당 $0.16씩 배당금을 줄
것이라고 발표 하였다. 한편 채권시장에서는 8%의
채권수익률이 형성된 상태이다.
이 때 이 주식에 대한 당신의 요구 수익률은 12%라고
가정해 보자. (주식이 보다 위험하므로 채권수익률에
4%의
주관적인 위험프리미엄을 보탠 수준임.)
▫ 이 때 당신이 보는 이 주식의 “적정가(the proper price)”를
1기 배당가치 모형을 이용해 구하면? 당신은 이 주식을
살 것인가 안 살 것인가?
P0 
0 . 16
1  0 . 12

60
1  0.12
 $53.71( 적정가 )
> $50(시가)
13
▫ 시가에 비해 주관적인 적정가가 높으므로 매입을 결정.
☼ 왜 이 주식의 주가는 현재 $50인가?
시장 참가자들 중에는 이 주식의 미래 현금 흐름
불확실성에 따른 위험도를 당신과 다르게 평가하는
(즉, 미래 현금 흐름의 현재가치를 당신보다 더 낮게
평가하는) 사람들이 존재하기 때문임.
가령 주식투자를 매우 위험하게 생각하는 ‘나 신중’
씨의 인텔 주식에 대한 요구수익률은 16%인 것으로
가정해 보자. (즉, 그의 주관적인 위험프리미엄은
8%이다.)
‘나 신중’씨는 또한 투자분석가의 미래 가격 예측을
신뢰할 수 없다고 생각한다. 그가 보는 1년 후 가격은
$55에 불과하다.
14
▫ 이 경우 ‘나 신중’씨가 보는 이 주식의 적정가를 1기
배당가치 모형을 이용해 구하면?
그는 이 주식을 살 것인가 안 살 것인가?
P0 
0 . 16
1  0 . 16

55
1  0.16
 $47.55( 적정가 )
< 50(시가)
▫ 주관적인 적정가가 시가에 못 미치므로 그는 이 주식을
매입하지 않기로 결정할 것이다.
15
일반 배당가치 모형
(Generalized Dividend Valuation Model)
• 1기 가치평가 모형을 모든 가능한 투자기간으로 확장
P0 
D1
(1  k e )
1

D2
(1  k e )
2


Dn
(1  k e )
n

Pn
(1  k e )
n
(2)
Pn = n년 말의 가격
Dn = n년 말의 배당
• 만일 주식이 먼 미래 때 까지 장기 보유된다면 매도가격은
현재가격에 영향을 미치지 않음.
▫ 즉, n이 대단히 큰 값이면 마지막 항은 아주 작은 값임.
▫ 가령 ke = 0.12일 때, 지금부터 75년 후 받게 될 $50의
현재가치는 1센트에 불과함. ($50/(1.1275) =$0.01 ).
16
• 따라서 맨 마지막 항을 무시하고 (2)식을 다시 쓰면

P0 
Dt
 (1  k
t 1
e
)
t
(3)
• 이것은 어떤 주식의 현재가치(“적정가격”), P0,은 다름
아닌 미래 배당흐름의 현재가치이며 다른 어떤 것도
여기에 영향을 미치지 않는다는 것을 나타냄.
(P0을 흔히 주식의 내재가치(intrinsic value)라고 부름.)
• 주식의 미래 배당흐름은 불확실한 많은 요인들의 지배를
받으므로 누구도 정확하게 예측하기 어려움. 따라서
내재가치는 사람들에 의해 서로 다르게 인식되는
주관성이 있기 마련인 것임.
☞ 케인즈는 주식투자를 미인대회(beauty contest)에 비유한 바
있음.
미인선발대회는 내가 좋아하는 미인이 아니라 심사진 다수가
17
좋아하는
고든 성장률 모형(Gordon Growth Model)
• 일반 배당가치 평가모형을 단순화시킨 모형.
• 매년 일정 증가율( g )로 배당이 불어난다고 가정.
▫ 일반적으로 해마다 일정한 증가율로 배당을 늘여
나가고자 노력하는 기업들이 많은 것이 사실임.
(특히 우량기업일수록 그러함)
이제 (3)식은 아래와 같이 고쳐 쓸 수 있게 된다.
P0 
D 0  (1  g )
(1  k e )
1
1

D 0  (1  g )
(1  k e )
2
2


D 0  (1  g )
(1  k e )


(4)
D0 = 가장 최근에 지급된 배당
g = 기대 배당증가율
ke = 주식 투자에 대한 요구 수익률
18
• 또한 g < ke임을 가정
▫ 배당증가율은 실제로 요구수익률 보다 낮기 마련임
☞ 배당증가율이 주식 요구수익률과 같거나 더 크면 (4)식
에서 보듯 배당액은 점점 커져 무한대로 수렴하게 된다.
결국 회사는 감당할 수 없는 배당으로 인해 머지 않아
자본금 전액을 잠식하고 말 것이다. 이러한 회사의
주식은 그 가치가 휴지와 같을 수 밖에 없다. 가령 (4)식
으로부터 도출된 (5)식에 ke = 0.1(10%)를 대입하고 g =
0.12(12%)를 대입해보면 주식의 적정가는 (-)값이
나오게 된다.(즉, 0이 된다.)
• 여기서 P0 은 무한등비급수의 합이며
초항은 D 0 (1  g ) 이고 공비는 1  g ( < 1 )임.
1  ke
1  ke
• 4장의 부록에서 도출한 바 있는 공식을 이용해 P0을
구하면 다음과 같다.
19
P0
=
=
초항
1  공비
D 0 (1  g )
P0 
ke  g
D1
ke  g
=
=
D 0 (1  g )
D 0 (1  g )
1  ke
1  ke
1 g
1 
1  ke
= 1 k
e
1  g
1  ke
D1
ke  g
(5)
• 결국 주식의 가치(“적정가격”)는 아래 3가지에 달려 있다.
① 첫 해의 배당액 (D1)
② 기대 배당성장률 (g)
③ 주식 투자에 대한 요구수익률(ke)
20
• 어떤 주식의 현재 가격은 ①이 상승하거나, ②가
상승하거나 혹은 ③이 하락하면 상승한다.
• 배당가치 평가 접근법은 이론적으로는 주식의 가치를
산정하는 최상의 방법임. 그러나 실제로 적용하기 쉽지
않고 특히 아래의 경우 만족스럽지 못한 결과를 낳는다.
– 회사가 배당을 하지 않을 때
– 회사의 배당 증가율이 들쭉날쭉 변동이 심할 때
☼ 실제로 많은 주식들이 오랫동안 무배당이거나
배당이 들쭉날쭉한데…. 이들 주식은 도대체
어떻게 가치를 평가 받을 수 있을까?
(31쪽 이후부터 관련 논의를 다룬다)
21
시장의 유가증권 가격결정 – 고든 모형의 응용
시장에는 성향이 다른 여러 종류의 투자가들이 섞여있기
마련인데 우선 이소심씨의 경우를 보자.
이소심씨는 내년에 $2의 배당금을 지불할 것으로 기대
되는 주식의 매입을 고려하고 있다. 투자분석가들은 이
주식의 배당지급액이 매년 3%의 증가율로 무한히 계속
될 것으로 예측한다. 이 주식의 가치를 평가해보면?
• 배당흐름이 일정하게 유지될 지 회의적이어서
이소심씨가 배당증가율 추정치를 신뢰하지 않는다고
해보자. 따라서 그는 높은 불확실성(리스크)에 대한
보상으로 15%의 투자수익률을 요구한다.
• 이 때 이소심씨가 지불할 용의가 있는 주식가격을 고든
성장률 모형(Gordon Growth model)을 토대로 구해보면:
22
P0 
D1
ke  g
$2

0.15
 0.03
 $16.67 이다.
• 한편 어느 정도 주식투자의 경험이 있는 박노련씨는
12%의 수익률이면 이 주식에 투자할 용의가 있고(즉,
요구수익률이 12%이고) 자신을 주식투자의 달인이라고
생각하는 ‘대박 김병만’씨의 요구수익률은 10%이다.
투자자
할인율(ke)
이소심 (회의적/정보부족)
15%
박노련 (다소 자신감/정보양호) 12%
김병만 (강한 자신감/정보막강) 10%
주가(P0)
2/(0.15-0.03) = $16.67
2/(0.12-0.03) = $22.22
2/(0.10-0.03) = $28.57
• 위험이 가장 낮다고 인식하는(따라서 가장 낮은 투자
수익율(ke)을 요구하는) 투자자가 가장 높은 가격을
지불할 용의를 갖고 있음을 알 수 있다.
23
• 따라서 이제 시장 가격은 매도자가 받아들이는 가장
높은 가격에서 결정될 것이다.
• 시장에 새로운 정보가 유입되면 투자자들의 투자심리에
영향을 주어 투자자들로 하여금 요구수익률을 조정하게
하는데….그 결과 주가는 아래와 같이 오르내린다.
▫ 호재(good news)로 받아들여질 경우:
인식된 위험↓ ⇒ ke ↓ ⇒ 주가↑
▫ 악재(bad news)로 받아들여질 경우:
인식된 위험↑ ⇒ ke ↑ ⇒ 주가↓
24
통화정책과 주가
• 금리를 하락시키는 팽창통화정책의 영향
e
(금융부문) 채권의 RET ↓ ⇒ ke↓
(실물부문) 총생산  ⇒ g 
⇒ P0 
☞ 이러한 이유로 주식투자자들은 흔히 금리인하는
‘주식시장의 보약’, 금리인상은 ‘주식시장의 독약’으로
인식하는 것을 볼 수 있음.
미국 금융위기와 한국 주식시장
• 미국경제의 높아진 불확실성과 글로벌 파급효과
(금융부문) ke
(실물부문) g ↓
⇒ P0 ↓
25
가치평가 오류가 불가피한 이유
배당 성장률 추정상의 문제
• 배당 가치평가 모형을 사용하려면 배당(혹은 매출이나
순이익)의 성장률을 추정해야 하는데 주로 과거 자료를
사용할 수 밖에 없음.
• 이것은 미래에 발생할 회사 상황의 어떠한 변화도 고려에
포함되지 않는 방법이므로 한계가 있음.
• 배당성장률 추정치의 작은 차이가 결국 추정 주가에 큰
차이를 야기할 수 있음.
위험도 추정상의 문제
• 어떤 기업 주식에 대한 투자자의 요구 수익률은
투자자가 인식하는 그 주식의 상대적 위험도(risk)에 달려
있으며 이는 추정하기가 아주 어려움.
26
배당금 예측상의 문제
• 설령 기업의 성장률과 투자자의 주식투자 요구수익률에
대한 정확한 추정치를 갖고 있다고 해도 기업이 이익금
중에서 얼마를 배당할 것인지 알 수 있어야 함.
• 미래 배당금에 영향을 미치는 2가지 요인 (불확실함)
▫ 기업의 향후 성장기회와 사업확장계획
▫ 경영진의 미래 현금흐름에 대한 판단
결론
• 이러한 문제들로 인해 결국 주가의 단기 등락은 불가피한
자연스러운 현상인 것임.
• 그러나 장기적으로 주가는 기업의 수익성을 반영하는
움직임을 보이게 됨.
27
◈ 실증분석: 주가와 기업 수익성 ◈
수십 년의 장기데이터를 사용한 실증분석에 따르면
미국 기업들의 경우 주가와 현금흐름 할인법으로
계산된 내재가치 사이에 매우 높은 상관관계가 있는
것으로 나타남. 주가와 기업 수익성 사이의 이러한
상관관계는 분석대상기간이 길수록 더 강하게
나타나고 기간이 단기일 경우 다소 약해짐.
28
우리나라 상장기업의 배당수익률 추이
(90년 – 11년, % )
3.0
Dividend Yield
2.5
2.0
1.5
1.0
0.5
0.0
90 92 94 96 98 00 02 04 06 08 10
* 시가총액 대비 배당금 총액의 비율임.
29
우리나라 상장기업의 배당총액 추이
(90년 – 11년, 조원)
18
16
14
12
10
8
배당증가율 평균
1990-1999 : 10.4%
2000-2011: 20.2%
1990-2011: 15.7%
6
4
2
0
80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10
30
주가수익비율 접근법
(Price Earnings Valuation Approach)
• 주가수익비률(Price Earnings Ratio; PER)은 주식의
1주당 시가와 1주당 당기 순이익의 비율임.
• PER에 의한 적정주가 추정방법은 (앞의 이론 모형들
과는 달리) 배당을 지급하지 않는 개인회사에 대해서도
적용 가능.
PER 
주가
1주당 당기순이익 (EPS)
(6)
☞ PE 또는 P/E로 표시하기도 함. 분모 분자에 발행주식
수를 곱하면 시가총액과 당기순이익의 비율이 됨.
따라서 아래와 같이 나타내도 마찬가지임.
31
PER 
시가총액
당기순이익
• 순이익 1원당 시장이 그 몇 배를 지불할 용의가 있는
지를 나타냄.
▫ PER값이 낮을수록 수익실적에 비해 시장에서 저평가된
상태임을 나타냄. (그러나 시장은 과거의 수익실적만을
토대로 기업을 평가하는 것이 아니므로 왜 현재의 가격이
낮은 지 알기 위해서는 다른 많은 지표들을 살펴봐야 함.)
▫ PER값이 높을수록 수익실적에 비해 고평가된 것을
나타내지만 또 다른 한편으로는 시장이 그 기업의 미래
수익실적 개선을 예측하고 이를 가격에 미리 반영하고
있는 것으로 해석할 수도 있음.
32
• PER는 또한 수익실적이 향후 변함없이 유지된다는
가정하에서 수익으로 투자원금을 100% 회수하는 데
걸리는 기간을 의미하는 것으로 해석됨.
☞ PER가 8이면 시가총액으로 기업을 매수했을 때
매년의 순이익으로 8년 후 투자원금 전액을 회수
할 수 있다는 것임. 투자원금 대 이익의 비율이
8이므로 투자원금의 크기에 상관없이 회수기간은
8년임.
• EPS (Earnings Per Share; 주당 순이익)는
당기순이익을 발행주식수로 나누어 준 것임.
• EPS가 높다는 것은 경영실적이 그만큼 좋았다는
뜻이며 배당 여력 또한 커졌다는 것을 나타냄.
33
• 주당 순이익이 꾸준히 높은 기업일수록 재무구조
안정성이 높고 성장가능성도 높음. 따라서 주식가격은
원칙적으로 이 주당 순이익 움직임에 대한 전망에 따라
오르내리는 것으로 볼 수 있음.
☞ 일반적으로 EPS가 상승하는 기업은 기술우위를 통해
신제품의 시장지배력을 급속히 늘여가는 경우가 많음.
☞ 블루칩으로 불리는 대형우량주의 주가가 고가
이면서도 여전히 투자자들에 의해 선호되는 것도 EPS가
그만큼 높기 때문임.
▫ EPS는 대개 과거 자료를 사용함 (후방형 PER; trailing
PER)
▫ 간혹 향후 2분기 또는 4분기 동안 창출할 것으로
기대되는 예측 수익을 사용하기도 함(전방형 PER;
projected or forward PER).
34
▫ 그러나 영업실적과 제반 이익에 영향을 주는 요소들은
늘 왔다 갔다 하기 때문에 순이익예측은 매우 어려움.
• 동일한 업종의 기업들은 장기적으로 유사한 PER값을
보일 것으로 기대할 수 있음. 따라서 동일하거나 유사한
산업에 속하는 기업들에 대해 수치비교를 했을 때 보다
유용성이 있음.
☞ 가령 업종평균치보다 낮을수록 저평가된 상태로 볼 수
있고 향후 주가상승을 기대할 수 있음. 그러나 과거실적이
미래에도 계속된다는 보장이 없다는 점을 감안해야 함.
☞ 장치산업의 경우 대규모 설비투자 후 얼마 동안은 PER가
낮게 나오는 경우가 많음. 또한 성장기산업이나 첨단산업
은 성숙기산업에 비해 높게 나오는 경향이 있음. 이러한
이유로 가령 A기업(전자)의 PER가 7이고 B기업(소프트
웨어)의 PER가 30이라고 해서 B기업 주식이 A기업에
비해 반드시 과대평가된 것으로 단정할 수 없는 것임.
35
• PER는 또한 (-)값이 될 수도 있음. 즉, 기업이 손실을
기록하는 경우인데 이 경우 PER값 비교는 무의미해짐.
• PER값의 또 다른 해석: PER값의 역수를 %로 나타내면
일종의 투자수익률 개념으로 해석할 수 있는데 이것을
이익수익률이라고 부름.
이익수익률(earning yield)
1
PER
 100 
주당 순이익
주가 ( 투자원금 )
 100
☞ 주당 천원의 순이익을 내는 기업의 주식이 주당 만원이라면
이 주식의 PER는 10인데 이것을 투자수익률 관점에서 바라보면
만원을 투자해서 회사를 통해 천원의 순이익을 창출, 10%의
투자수익률을 올린 셈이 됨.
36
☞ 아래 표에서처럼 PER가 10보다
작으면 작을수록 투자수익률은
10% 이상의 점점 더 큰 값이 됨. 수익의 전부를 주주에게
배당하는 것도 아니고 과거실적이 되풀이 된다는 보장도 없지만
PER가 10 보다 작을수록 투자 메리트가 그만큼 더 높아진다는
것을 알 수 있음.
주가 = 10,000원
지표(단위)
EPS(원)
200원
500원
PER(배)
50
20
10
5
3.3
2%
5%
10%
20%
30%
1
PER
 100
(%)
1,000원 2,000원
3,000원
이익수익률(주가 대비 1주당 순이익)
37
우리나라 상장기업의 주가수익비율(PER) 추이
(1976년 – 2011년, 배)
35
30
25
20
15
10
5
0
76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10
38
PER수치의 시계열자료 사용 시 주의점
▫ 앞의 그래프와 같이 시장전체에 대해 또는 특정
개별기업에 대해 PER수치의 장기 변화추세를 종종
살펴보게 되는데 이 때 이익의 변동성에 따른
수치의 불안정성에 유의해야 함.
▫ PER는 분자보다 분모인 주당순이익의 변동성에
지배되어 기간에 따라 오르내림이 심하게
나타나는 경향이 있음.
▫ 특히 경기침체기에는 이익이 매우 작아져 시장
전체의 PER값이 매우 높게 산출됨으로써 PER에
의한 주가 평가가 어려워지게 됨.(98,99년의 경우)
39
주가순자산 비율 (Price Book-value Ratio: PBR)
PER는 수익대비 주가를 보므로 회사재산에 대한 고려가
전혀 없음. 수익은 많이 나지 않아도 재산이 많은 부자기업
들이 있기 때문에 PBR은 회사 재산측면에서의 투자가치를
보고자 하는 비율임.
PBR 
주가
1주당 순자산 (BPS)
☞ 분모 분자에 발행주식 수를 곱하면 시가총액과 순자산의
비율이 됨.
• 순자산이란 대차대조표의 자산에서 부채를 차감한 후의
자산, 즉, 자기자본을 말하며 ‘장부상으로 본 이 회사의
순가치(Book-value)’를 나타냄. 이것을 발행주식 수로
나눈 것이 1주당 순자산 (Book-value Per Share; BPS)임.
40
• 부동산이나 설비시설, 유동자금 등 자산을 많이 보유하고
있으면서도 부채비율이 낮은 소위 ‘알짜기업’일수록
분모인 BPS는 더 큰 금액으로 나타남.
▫ BPS를 기업의 ‘청산가치’라고도 하며 주가가 이 보다
낮을 경우 PBR은 1 아래로 내려가게 됨.
PBR이 1이하 이면 저평가?
주식수 100만주, 주가 5,000원, 순자산 100억 원인
기업을 고려해 보자. 우선 PBR부터 구해보면
1) PBR =

시가총액
순자산

주식 수  주가
100 만  5 , 000 원
순자산
순자산

50 억
100 억
 0 .5
41
2) 순자산(즉, 자산 – 부채)이 100억이라는 것은
기업이 가진 재산을 모두 팔았을 때 때 부채를
갚고도 100억이 남는 다는 의미(물론 기업 자산이
장부상의 가격대로 팔리는 것은 아니겠지만 이론상
그렇게 된다는 것임).
3) 한편 주주들이 주식을 몽땅 팔아서 얻게 되는 돈
(시가 총액)은 50억으로 차라리 회사를 없애서 손에
쥐게 되는 돈(순자산)의 반에 불과. 따라서 현재의
주가는 회사의 순자산 가치에 비해 저평가 상태임.
4) 시가총액이 순자산과 같을 때 PBR은 1이 되며 이는
시장에서 유통되는 가격이 장부상의 1주당 가치와
일치함을 의미. 따라서 PBR이 1을 기준으로 작으면
작을수록 순자산 가치(청산가치)에 비해 주가가
저평가된 것을 의미.
42
☞ 그러나 고정자산을 많이 보유하지 않는 서비스업종에
속한 기업들의 경우 장부가치를 따지는 것 자체가 무의미
하다고 할 수 있음.
• 재산이 많은 기업의 주식(흔히 ‘자산주’라고 부름)이면서
시장에서 저평가되고 있다면 그 이유는 수익실적이
나쁘거나 향후 수익개선전망이 나쁘기 때문일 경우가
많음. 그럴 경우 PBR과 PER가 동시에 낮게 나옴.
• 2011년 10월 20일 현재 KOSPI 1,805선에서 거래소 상장
주식의 평균 PBR은 1.18 정도 됨.
43
상장기업의 주가순자산비율(PBR) 추이
(04년 – 11년, 배)
2.0
1.75
1.63
1.5
1.34 1.5
1.46
1.19
1.16
0.94
1.0
0.5
0.0
04
05
06
07
08
* 시가총액 대 순자산총액의 비율임.
09
10
11
44
주가매출비율(Price Sales Ratio: PSR)
적자기업의 경우 PER값이 (-)가 되어 PER를 이용한 분석
이 무의미해짐. 이럴 경우 순이익 대신에 음의 값이 될 수
없으면서 변동성도 작은 자료, 가령 매출을 이용할 수 있음.
PSR 
주가
1주당 매출 (SPS)
☞ 분모 분자에 발행주식 수를 곱하면 시가총액과 매출액의
비율이 됨.
• 주가가 주당 매출액(Sales Per Share; SPS)의 몇 배
인가를 나타내는 수치로, 높을수록 매출액 신장 가능성,
즉, 성장가능성을 시장이 높게 평가하고 있는 것으로
해석할 수 있음.
45
▫ 그러나 PSR 수치가 동종 업체들에 비해 지나치게 높을
경우 주가에 거품이 있는 것으로 볼 수 있음.
• PSR은 또한 PER과 매출액 순이익률(margin)의 곱과
같음.
PSR 
시가총액
매출액

시가총액
순이익

순이익
매출액
 PER  매출액 순이익률 (margin )
☞ 어떤 벤처기업의 PER가 지금은 낮더라도 미래에 margin
이 늘어나는 성장 잠재력을 확실하게 갖추고 있다면 낮은
PSR수치는 오히려 좋은 투자대상일 수 있음을 암시함.
• 현재의 수익실적보다 미래가치가 중요시되는 신생기업,
벤처기업 평가에 유용함. 이 경우 작을수록 주목할 만 함.
46
주가현금흐름비율(Price Cash-flow Ratio: PCR)
급격한 경기침체나 시중 자금난이 심화되는 상황일수록
기업의 현금흐름에 대한 고려가 중요해지며 현금흐름이
극단적으로 나쁠 경우 흑자 도산할 수도 있음.
PCR 
주가
1주당 현금흐름 (CPS)
현금흐름 = 당기순이익
+ 현금 지출이 없는 비용
– 현금 유입이 없는 수익
1 주당 현금흐름

현금흐름
총주식수
47
• 현금흐름은 당기순이익에 현금지출을 수반하지 않는
감가상각비, 유가증권 평가손 등을 더하고 현금유입을
수반하지 않는 유가증권 평가익 등을 차감해서 구함.
이를 발행주식수로 나눈 것이 1주당 현금흐름(Cash-flow
Per Share; CPS)임.
☞ 감가상각비는 순이익 계산과정에서 비용으로 간주하여
이미 차감하였지만 현금 유출 없이 사내 유보된 돈
이므로 다시 보태준 것이고 유가증권 평가손익도 장부
상의 손익이므로 재조정하여 현금중심의 순이익을
포착하는 것임.
☞ 따라서 현금흐름은 장부상에 기록된 순이익이 아니라
기업이 실제 사용할 수 있는 자금을 나타냄. 클수록
그만큼 재무안정성이 높고 부도가능성이 낮다는 의미.
• 현금흐름은 배당금을 지급하고, 부채를 상환하며, 설비를
확장하는 등을 할 수 있는 자금조달 능력의 지표임.
48
• PER와 마찬가지로 이 지표가 비교대상에 비해 낮을수록
저평가된 것으로 봄.
• PER과 PCR은 서로 연관되어 있지만 주식시장은
회계적인 이익보다 실제 현금흐름에 보다 민감하다는
점에서 PCR이 주가 움직임과 보다 밀접한 관계임.
PER이 높아도 PCR이 낮으면 저평가 판단을 내리게 됨.
• PCR의 역수를 %로 표시한 것, 즉, 1주당 현금흐름이
주가에서 차지하는 비율 또한 PER의 역수와 마찬가지로
하나의 ‘이익수익률’지표로 활용됨.
☞ 즉, 주주자본의 요구수익률은 국채금리에 위험 프리미엄
(4%정도를 가정)을 가산한 것으로 볼 수 있으므로
국채금리가 6~8%일 때 주식투자의 요구수익률은 대략
10~12%로 볼 수 있을 것임. 따라서 10배를 기준으로
PCR이 이 보다 낮으면 이 요구수익률을 충족시키게 됨.
가령 PCR이 5배이면 이익수익률은 20%가 되어 10%의
여유가 있으므로 훌륭한 투자대상이라 할 수 있음.
49
EV/EBITDA
• EV(Enterprise Value)는 주식 시가총액에 순차입금
(총차입금 – 현금 및 투자유가증권)을 더한 것으로 기업
을 매수한다고 가정할 때 지불해야 하는 금액을 뜻함.
즉, EV는 주주지분의 가치(시가총액)에 채권자지분의
가치(순차입금)를 합산한 기업의 전체가치에 해당.
• EBITDA는 '이자, 법인세, 감가상각비 차감 전 이익’
(Earnings Before Interest, Taxes, Depreciation & Amortization)
을 뜻함. 이자비용, 세금, 유형자산에 대한 감가상각비,
무형자산에 대한 상각비 (Amortization) 등을 빼기 전
이익이므로 영업이익에 감가상각비를 더한 것과 같음.
☞ 영업이익도 EBITDA와 마찬가지로 이자와 법인세 차감
전 이익임. 그러나 감가상각비는 이미 차감한 상태의
이익임을 기억할 것.(1장 강의노트 참조)
50
당기순이익 vs. EBITDA
• 당기순이익의 경우 기업 본연의 영업활동을 통한
이익창출능력을 파악하는데 한계가 있음. 특별
이익이나 특별손실의 발생, 세법의 변경 등에
의해 영향을 받기 때문. 또한 차입금이자를 차감한
것이므로 자본구조(자기자본과 타인자본의 구성
비율)에도 영향을 받음.
• 그러나 EBITDA는 특별손익, 감가상각 방법,
법인세, 부채비율 등에 영향을 받지 아니함.
☞ EBITDA가 기업의 실제 가치를 평가하는데 있어 보다
중요시되는 이유는 바로 영업활동을 통한 이익창출
능력을 그대로 나타내고 있기 때문임.
51
EV/EBITDA

시가총액
영업이익
 순차입금
 유무형자산
상각비
• EV/EBITDA 비율은 기업이 자기자본과 타인자본을 이용
하여 창출할 수 있는 영업 현금흐름에 비해 기업의 총
가치가 어느 정도인지를 나타냄. 이 비율은 또한 기업
인수 시 그 인수비용(EV)을 영업 현금흐름(EBITDA)으로
몇 년 만에 회수 할 수 있는가를 의미함. 따라서 낮을수록
좋으며 이 비율이 높을수록 고평가된 것으로 판단함.
• PER와 유사한 개념의 비율이지만 장부상 순이익 대신에
영업현금흐름을 분모로 사용하고 시가총액 대신에
시가총액과 순차입금의 합계를 분자로 사용하는 점이
다름.
52
PER
시가총액
당기순이익
EV/EBITDA
시가총액
영업이익
 순차입금
 자산상각비
• EV/EBITDA는 국가간에 순이익이 상이하게 계산되는
요인(감가상각방법이나 조세제도 차이 등)과 무관하므로
국제비교에 적합한 지표임. 또한 PER와는 달리 자기
자본과 타인자본의 구성비율에 영향을 받지 않으므로
자본구성이 상이한 기업들 간에도 의미 있는 비교가
가능함.
53
합리적 기대(Rational Expectations) 이론
경제학에서 기대의 중요성
• 기대는 경제주체들의 행위에 영향을 미치고 따라서
거시적 경제활동 수준에 심대한 변화를 초래하게 됨.
• 몇 가지 예
▫ 피셔 방정식: i = re + πe
( re = i – πe )
▫ 자산 수요함수
QD = f (부, RETeR, 위험, 유동성)
▫ 채권 공급함수
BS = f (가격, 투자의 기대수익률, πe, 정부 재정적자)
54
▫ 금리 기간구조에 대한 유동성 프리미엄이론
i t  i t  1  i t  2    i t  ( n 1 )
e
i nt 
e
e
n
 l nt
적응적 기대가설(Adaptive Expectations Hypothesis)
• 사람들은 과거 경험과 정보에 의존해 기대를 형성
EX) 가령, 현재의 기대 인플레율은 과거 모든 인플레율의
가중평균과 같다고 간주. 이 때 가중치는 과거로
갈수록 작아짐.
• 문제점 (그럴 리가 없다!)
▫ 사람들은 과거의 실수에서 아무런 교훈을 얻지 않고
▫ 또한 자신의 기대를 서서히 조금씩 조정할 뿐이며
▫ 미래의 예측된 상황에 대해서도 전혀 반응하지 않는다.
55
합리적 기대가설(Rational Expectations Hypothesis)
• 사람들은 과거의 경험 뿐만 아니라 가용 관련 정보를
모두 이용한 미래 상황의 예측과 평가를 토대로 기대를
형성함.
엄밀한 정의
• Let Xe = 변수 X의 합리적 기대치. Then
e
of
X =X
Xof = 현재의 모든 주어진 정보를 토대로 한 최적 예측
(optimal forecast or “the best guess possible”)
• 가정:
X의 미래 값을 예측하는데 있어 사람들은 체계적인
(따라서 예측 가능한) 실수를 저지르지 않는다.
56
이론의 함축
• 위의 가정은 합리적 기대가 비록 최적 예측이긴 하지만
반드시 완벽하게 정확하지 않다는 것을 뜻함. 그럼에도
불구하고 예측오차는 임의적(random)이어서 예측이
가능 하지 않으며 평균값이 0임.
해석과 논평
• 합리적 기대를 하는 사람들은
▫ 모든 가용정보를 활용해 최적 예측(즉, 최상의 추측)에
해당하는 기대를 형성한다.
▫ 과거자료에 머무르지 않고 그 이상의 정보를 사용해
기대를 형성한다.
▫ 새로운 정보를 접하게 되면 종종 신속하게 그들의
기대를 변경시킨다.
57
• 사람들은 합리적 기대를 할 수 밖에 없는 강력한
인센티브를 갖고 있으며 이는 그렇지 않았을 경우 비싼
대가를 치러야 하기 때문임. 특히 금융시장에서 그
대가는 엄청날 수 있음.
• 주의) 아래의 경우 합리적 기대가 아님.
▫ 사용 가능한 정보를 사용하는데 실패했다.
▫ 사용 가능한 정보가 있는데도 이를 알지 못했다.
☼ 기대 형성 당시 추가적인 정보가 구해질 수 없어서 사용
하지 않았다면? 이 경우 합리적 기대가 형성된 것으로 봄.
• 합리적 기대에 대한 반론
▫ 최적 예측에 드는 노력이 지나치게 고비용일 수 있다.
▫ 관련 정보의 존재를 파악하지 못할 수 있다.(정보취득
비용이 지나치게 높을 경우)
58
효율시장 가설
(The Efficient Market Hypothesis; EMH)
• 합리적 기대를 유가증권의 가격결정 모형에 응용.
효율시장 가설
효율적인 시장은
► 모든 관련 정보를 사용해 합리적으로 작동한다.
► 이윤창출기회를 절대 남겨두지 않는다.
► 주식의 가치 평가와 가격 결정을 가장 잘 수행
한다; 따라서 유가증권의 시장가격은 모든 관련
가용 정보를 충분히 반영한다.
59
이제 주식가격 결정 원리를 보다 잘 이해하기 위해
정보가 어떻게 가격에 영향을 미치는 지 살펴보자.
우선 자산 보유에 대한 수익률 공식을 상기하자.
Pt+1 – Pt + C
(8)
RET =
Pt
여기서 Pt+1값은 모르는 값이므로 (8)식을 고쳐 쓰면
Pet+1 – Pt + C
(9)
RETe =
Pt
주식투자자들이 모두 합리적 기대를 한다고 가정하면
Pet+1 = Poft+1 , 따라서 RETe = RETof
(10)
문제는 여기서 Pet+1 나 RETe는 바로 관측되는 값이
아니라는 점이다.
60
그러나 5장의 채권시장 분석을 상기해 보면 유가증권의
기대수익률 RETe는 그 유가 증권의 수요량과 공급량을
일치시키는 시장의 균형 수익률, 즉, RET*, 에 수렴하는
경향이 있음을 알 수 있다. (수요에 기대수익률이 반영
되고 있으므로 균형이 성립되었을 때의 수익률은 곧
기대수익률로 간주할 수 있다는 것임. )
따라서 시장균형은 아래를 성립시킨다.
RETe = RET*
(11)
이제 (10)식과 (11)식을 결합하면 아래의 결과를 얻는다.
효율성 시장가설
Pt 1  Pt  C
of
RET
of

 RET
*
(12)
Pt
61
• 이 방정식은 금융시장에서 어떤 유가증권의 현재
가격(Pt)은 그 유가증권의 최적 예측 수익률(즉, 합리적
기대에 의한 수익률)이 시장 균형수익률과 같아지도록
형성된다는 것을 나타낸다.
▫ 이것은 효율적 시장에서의 유가증권의 가격은 모든
가용 정보를 충분히 반영하게 됨을 의미한다.
이게 무슨 소리인지….아래의 구체적 예를 통해 효율성
시장의 작동원리를 따져보면 분명해 질 것이다.
액면 $1,000에 표면금리 10%인 이표채의
시장가격은 Pt = $1,000, 시장균형 수익률은
RET* = 12%라고 하자.
모든 정보를 이용해 합리적 기대를 하는 시장의 일부
투자자들이 1년 후 가격이 지금보다 200원 더 오를
것으로 예측(최선의 추측)한다고 하자.
62
▫ 즉, Pet+1= $1,200 에서 이들의 최적예측 수익률은
Pt 1  Pt  C
of
RET
of

Pt

$1,200  $1,000  $100
 30%
$1,000
RETof > RET*(=12%)이므로 시장이 제공하는 이러한
이윤창출 기회를 활용하기 위해 이들은 채권 매입에
나서게 된다. 따라서 수요  ⇒ Pt  하게 된다. 이 때
Pt 에 따라 RETof 는 하락한다.
만일 가격이 현재의 $1,000에서 $1,150까지 올랐다면
최적 예측수익률은:
Pt 1  Pt  C
of
RET
of

Pt

$1,200  $1,150  $100
 1 3.04%
$1,150
투자자들의 계속된 매수는 결국 RETof = RET* = 12%가
성립될 때까지 가격을 끌어올릴 것이다.
63
▫ 만일 Pet+1 = $800이면 Pt는 어떤 영향을 받을까?
이 경우 이들의 최적 예측 수익률은
Pt 1  Pt  C
of
RET
of

Pt

$800  $1,000  $100
  10%
$1,000
즉, RETof < RET*(=12%)이므로 이러한 예측을 하는
투자자들은 신속하게 매도에 나서게 될 것이다. 따라서
공급  ⇒ Pt  하게 된다. 이 때 Pt 에 따라 RETof 는
상승하게 된다. 궁극적으로 RETof = RET*가 될 때까지
Pt 은 계속될 것이다.
• 결국 가격(Pt)이 최적 예측 수익률(즉, 합리적 기대에
의한 수익률)과 시장 균형수익률이 같아지는 수준에서
성립된다는 것임.
64
• 이상의 과정을 요약하면:
If RET
of
If RET
of
 RET
 RET


 Pt  , RET
of
 Pt  , RET
of


until
RET
of
 RET

• 이 과정은 신속하게 일어나며 또한 시장의 모든
참가자들이 관련 정보를 모두 알아야 성립하는 것은
아니다.
► 시장 내에 정보를 모르거나 비합리적인 참가자가
있더라도 효율적 시장의 조건은 성립한다.
► 효율적 시장에서는 남아있는 이윤창출 기회는 오래
가지 않는다.
► 시장이 효율적이면 유가증권의 시가는 모든 주어진
관련 정보를 충분히 반영하게 된다.
65
• 주식시장은 과연 효율적인가? 효율적이라면
▫ 주가는 모든 관련 정보를 반영할 것이다.
: 즉, 펀더멘탈(market fundamentals; 주식의 미래
소득흐름에 직접 영향을 미치는 요인들)을 반영하게 됨.
▫ 개인투자자는 시장의 예측을 능가할 수 없다. 즉,
체계적으로 시장을 이기는 것(“systematically beating
the market”)은 불가능해진다.
: 전망이 좋은 기업의 주가는 끌어올려지고 그 반대의
기업 주가는 끌어내려지게 될 것이므로 결국 주식의
수익률들은 대체로 서로 비슷해지는 경향을 보일
것이다.(주식 수익률은 매입가와 반비례 관계)
▫ 주식매입 시 비정상적으로 높은 수익을 기대할 수 없다.
66
효율시장가설의 증거
가설에 우호적인 증거
1. 투자분석가들과 뮤추얼펀드들이 시장을 능가하지
못하고 있다.
• 투자상담사들의 추천종목은 종종 시장 수익률을 밑돌고
심지어 “다트보드로 찍은 종목”보다 못하다.
▫ S & P 500 지수는 시장이 부진했을 때(70년대)나
시장이 잘 나갔을 때(80년대와 90년대) 모두 전문 펀드
메니저가 관리한 포트폴리오 수익률을 능가했다.
• 대부분의 뮤추얼 펀드는 시장 평균보다 실적이 저조하다.
• 특정 기간에 최고 수익률을 보인 펀드들도 그 다음
해에는 평균치 내지 평균 이하의 수익실적을 내는 일이
흔하다.
67
• 투자상담사나 뮤추얼 펀드의 과거 수익실적이 좋았다고
해서 미래에도 계속 좋은 실적을 낸다는 보장이 없다.
2. 주가는 공개된 정보를 이미 반영하고 있다. 따라서
예견된 정보공개는 주가에 영향을 미치지 않는다.
• 시장이 효율적일 경우 모든 공개된 관련 정보는 이미
주가에 반영돼 있다.
▫ 연방 공개시장 조작위원회(The Federal Open Market
Committee)의 연방기금금리 변경 결정은 대개 시장에
아무런 동요를 가져오지 않는다. 임박한 금리 변경
결정에 관한 정보가 이미 주가에 반영돼 있기 때문.
▫ 기업의 수익실적자료 공개가 흔히 아무런 주가 상승을
가져오지 못하는 이유도 해당정보가 이미 주가에
반영돼 있기 때문이다.
68
3. 주가는 임의보행(random walk)에 가깝다.
• ‘임의보행(random walk)’이란 어떤 경제변수의 주어진
현재 값이 높던 낮던 향후 움직임이 전혀 예측할 수
없도록(즉, 무작위적으로) 움직여 술에 만취한 사람의
비틀 거리는 모습과 같다는 것을 뜻하는 계량경제 용어.
• 랜덤워크 테스트 방법:
▫ 주가의 변화가 과거 움직임과 어떤 체계적인 관련성을
갖는지, 이를 토대로 예측이 가능 했었는지 살펴봄
▫ 주가 변화를 예측하는데 있어 과거 움직임 외에 어떤
공개된 정보를 사용할 수 있었는지 살펴봄.
• 일반적으로 이들 테스트 결과는 주가는 예측이
불가능하고 랜덤워크를 따른다고 하는 효율시장
견해를 뒷받침함.
69
4. 기술적 분석이 시장을 능가하지 못하고 있다.
• 기술적 분석(technical analysis): 과거 주가 자료를
토대로 변화 패턴을 찾아내 투자규칙을 수립하고 미래
주가를 예측하는 분석 (예; 각종 차트 분석 등)
• 시장이 효율적이라면, 주가는 임의보행일 것이고 따라서
기술적 분석은 시간낭비에 불과할 것임.
• 기술적 분석의 성과: 시장을 능가하지 못함.
70
기술적 분석의 예 (이동평균법)
71
비우호적인 증거
1. 소기업 효과(small-firm effect): 중소기업들의
수익률이 비정상적으로 높게 나타난다.
• 상당수의 실증분석 결과에 따르면 상대적 고위험을
감안하더라도 중소기업들이 장기적으로 비정상적인
고수익을 낸다.
• 그러나 최근 수 년 이러한 효과는 감소된 것으로 보임.
• 제시된 각종 원인들:
기관투자가들이 포트폴리오를 조정하면서 중소기업
주식비중을 늘여왔기 때문, 중소기업 주식의 낮은
유동성 때문, 중소기업에 대한 높은 정보수집 비용
때문, 중소기업 주식에 대한 위험평가상의 오류 때문
등등의 이유가 제시돼 왔음.
72
2. 1월 효과(January Effect)
• 거의 매년 1월에 예측 가능할 정도로 (따라서 효율성
가설에 위배되게) 꾸준히 비정상적으로 높은 주가
상승이 있어왔음.
• 대기업의 경우 근년에 감소했으나 소규모 기업 주식의
경우 여전히 1월 효과가 발견됨.
• 원인설명 가설: 세금 관련설(연말 이전 주식 매도를
통한 자본손실로 세금환급혜택을 확보한 후 신년도
시작 시 주식을 재매입하기 때문이라는 주장.)
▫ 이 가설의 문제점: 소득세 감면 혜택이 있는 기관투자가
(가령 연금)들이 왜 12월에 주식을 저렴하게 매입해
1월에 매도하는 투자전략을 구사함으로써 1월 효과를
상쇄시키지 않는 지를 설명하지 못함.
73
3. 시장 과민반응(overreaction)
• 최근의 연구결과에 의하면 주가는 호재와 악재 모두에
대해 과민 반응을 보인다고 함. 펀더멘털(fundamental)
변화에 부합하는 수준을 초과하는 가격변동을 보일 뿐만
아니라 가격의 조정 또한 서서히 이루어진다는 것임.
• EX) 어떤 기업이 대규모 적자를 발표했을 때 주가가
과민반응(overshooting)을 나타냄, 즉, 과도하게
하락함. 그러나 정상수준 회복까지 수 주일이 소요됨.
▫ 실적부진 발표 직후에 매입, 몇 주 후 정상수준 회복
시점에 매도하면 비정상적으로 높은 수익을 평균적으로
낼 수 있을 것이므로 이것은 효율시장 가설에 위배되는
현상임.
74
4. 과도한 변동성(Excess Volatility)
• 주식시장은 종종 과도한 변동성(즉, 과민반응 경향)을
보여줌: 내재가치의 변동에 의해 정당화되는 것보다
훨씬 크게 주가가 오르내리는 것을 볼 수 있음.
▫ 여러 실증연구 결과에 따르면 주식가격은 펀더멘탈
(내재가치 요인) 이외의 요인들에 의해서도 영향을
받음.
5. 평균회귀(Mean reversion)
• 평균회귀(또는 추세회귀라고도 함)란 어떤 확률적
(stochastic) 시계열 변수(가령, 주식수익률)가 장기
평균치(장기 추세치)에 근접해 움직이는 성질을 갖고
있어 이탈 시 시간의 경과와 함께 장기평균치로
되돌아오려는 성향을 보이는 것을 말함.
75
• 일부 연구에 따르면 주식 수익률은 평균회귀 현상을
보임; 과거 저조한 수익률을 보인 주식들은 앞으로
수익률이 개선될 확률이 더 높고, 과거 높은 수익률을
보인 주식들은 앞으로 저조해질 가능성이 더 높다는 것임.
• 만일 주식가격이 이러한 예측 가능한 변화패턴을 보이는
것이 사실이라면, 랜덤워크를 따르지 않는다는 의미임.
시장수익률
고수익률은 하락추세
장기평균
저수익률은 상승추세
시간
76
6. 새로운 정보가 반드시 주가에 즉각 반영되는
것은 아니다.
• 최근의 연구결과는 수익실적의 발표가 있더라도
주식가격이 효율시장가설이 암시하는 바와 같이 그렇게
즉각적으로 반응을 보이지 않는다고 함.
• 평균적으로, 주가는 예상을 뛰어넘은 높은 수익실적
발표 이후 한동안 상승을 지속하고, 예상을 뛰어넘은
저조한 수익실적 발표 후 한동안 하락을 지속한다.
77
결론
주식투자 유의사항
• 재무분석가들의 공개된 보고서는 가치가 별로임.
• 최신 비밀정보(hot tips)는 믿으면 안됨.
• 주가는 호재(good news)에도 하락할 수 있음.
투자자를 위한 Tip
▶ 끊임없이 사고 팔기를 되풀이 하면서 ‘시장의 예측을
능가(outguessing the market)’하려고 하지 말 것.
▶ 매수 후 보유 전략(“buy and hold” strategy)을
추구할 것; 평균적으로 투자성과가 더 나을 것임.
(최소한 수수료는 적게 물 것임)
78
단기투자와 장기투자
“Our favorite holding period is forever. “
Warren Buffet
장기 투자자의 투자기간
(Buy and hold 전략)
보통 투자자의 투자기간
매도
매수
79
원금 500만원을 매년 높은 ROE를 유지하는 우량
기업에 장기 투자했을 때 기업가치의 증가추이
14000
1억 1649만원
12000
10000
30%
8000
6000
4458만원
4000
20%
2000
1569만원
10%
0
0
1
2
3
4
5
6
7
8
ROE=자기자본 순이익률(Return on Equity)
= (순이익/자기자본)*100
9
10
11
12
80
이렇게 하면 퇴직할 때 쯤 부자가 되지 않을까?
• 우선 아래 차트를 보기 바란다.
81
▫ 연평균 복리수익률 비교 (미국자료: 1926-2000)
보통주: 13.0%
재무성 장기채권: 5.6%, 재무성 단기채권: 3.8%
인플레율: 3.2%
☞ 우리나라의 경우 90년대 이후 자료를 보면 주가의
오르내림이
심했기 때문에 채권투자의 수익률, 즉, 채권금리가
주식투자
▫ 1926년에 $1를 보통주에 투자했을 시 2,000년에 이르러
수익률보다 오히려 더 높은 것으로 나타남. (다음
$2,845.63로 불어나게 됨. 장기국채에 투자했다면
슬라이드 참조)
$40.22, 단기국채의 경우 고작 $15.64로 불어나는데
그침. 이는 아래와 같은 장기투자전략을 시사함.
• 여유자금을 인덱스펀드(즉, 잘 분산된 포트폴리오)와
MMF(즉, 채무불이행 위험이 없는 유가증권들)에 투자한
뒤 그냥 내버려 둘 것.
• 은퇴 시기가 다가오면 점차 MMF쪽으로 자금을 옮길 것.
82
우리나라의 투자 대상별 수익률 비교
지표
1990-2008
2000-2008
KOSPI 등락률1(전년 말 대비)
6.6%
9.4%
배당수익률2
1.7%
2%
주식수익률(1+2)
8.4%
11.4%
회사채유통수익률
10.3%
6.2%
주택매매가격 등락률(전국)
3.0%
5.9%
지가변동률(전국)
4.0%
3.6%
금리상품
예금은행 저축성금리
6.6%
(96년-08년)
4.9%
원화
원달러환율 절상률
-3.1%
0.41%
인플레율
소비자물가변동률
4.6%
3.2%
상품
주식
채권
부동산
83
다른 시장에서의 합리적 기대에 대한 증거
• 채권시장: 효율시장가설이 아주 설득력 있어 보임.
주식시장에 비해 불확실성이 훨씬 더 작음.
• 외환시장: 역시 효율적으로 작동하는 것으로 보임.
• 비금융시장…. 상품시장의 경우
▫ 금융시장과는 달리 효율성 검증이 어려운 편임. 시장의
현재가격이 가격기대를 금융시장만큼 신속히 반영
하지 못하는 편. 따라서 설문조사자료를 이용해 분석함.
▫ 증거는 혼재돼 있으며 명확하지 않음.
▫ 단, 설문조사자료에 의해 뒷받침 되는 한 가지 결론은:
어떤 변수의 움직이는 방식이 달라지면 ⇒ 이 변수에
대한 기대 형성 방식 또한 달라짐.
84
1987년의 암흑의 월요일 주가폭락과
효율시장가설
다우존스 산업평균지수의 추이
(86년 1월 – 89년 12월)
2900
The Black Monday Crash of 1987
2700
2년
2500
2300
2100
1900
1700
1500
1986년
7월
1987년
7월
1988년
7월
1989년
7월
85
• 1987년 10월 19일, 다우존스 산업평균지수는 사상 최대
일일 낙폭(508 포인트)을 기록하며 22.6%나 하락하였음.
▫ 이후 매우 더디게 회복되어 약 2년 후인 89년 8월에야
2691을 기록하며 대폭락 이전수준을 회복함.
☞ 2000년 4월 14일 소위‘피의 금요일(Bloody
Friday)’에는 다우지수가 616.23나 하락해 더 큰
낙폭을 보였음.(그러나 하락률은 5.64%였음)
• 합리적 기대이론은 주가의 대폭적인 변화가 발생하는
상황을 배제하지 않음. 주가의 대폭적인 변화는 기업
미래가치에 대한 최적 예측을 극적으로 감소시키는
새로운 정보에 의해 발생할 수 있기 때문임.
• 특히 주가 폭락이 예측될 수 없었다는 관점에서 보면
합리적 기대가설이 성립되는 것으로 볼 수 있을 것임.
86
• 그러나 주가 폭락은 합리적 기대가설이 타당하지
못함을 증명하는 것이라는 상반된 견해도 있으며 이에
대한 논란은 계속되고 있음.
◈ 대폭락의 원인은? ◈
• 기본적으로 쌍둥이 적자(무역 및 재정적자)가 누적되고
있는 상황에서 증시가 과도하게 상승장을 이어가고 있었던
것이 문제였음.
▫ 87년 당시 GDP대비 경상수지 적자는 3.4%, 연방정부의
재정적자는 3.1%나 되었으며 누적부채는 GDP의 50%에
육박하고 있었음.
• 이로 인해 달러 약세가 지속되리라는 우려가 팽배한
가운데 (달러 약세기조는 해외자금의 미국증시 유입을
줄게하므로 증시침체 기대를 형성시키게 됨) 금리
인상설이 터져나옴.
87
▫ 당시 소비자물가지수는 전년동기 대비 4% 이상씩
오름세를 지속하고 있었으므로 금리인상설이 신속히
시장분위기를 장악할 수 밖에 없었고 따라서 블랙
먼데이 며칠 전부터 미국 증시는 불안한 모습이었음.
• 이런 불안 속에서 기관투자가들은 위험을 줄이기 위해 선
물매도 포지션을 대량으로 취하고 있었던 것임. 마침내
암흑의 월요일, 프로그램 매도물량과 함께 margin call
물량(신용거래에 따른 추가증거금 청구와 반대매매에 따른
매물)이 함께 쏟아지면서 대폭락장이 연출되었던 것임.
88
부록 A
미국 증시 추이
미국 증시 추이 요약
20년대 : 증시과열기
30년대 : 증시대폭락과 함께 대공황으로 인한 장기 침체기
40년대 : 2차대전(41-45)의 전쟁호황으로 상승세
50년대 : 상승세
60년대 : 견조한 상승세 지속(안정성의 고성장기)
70년대 : 침체기 (2차례의 유류파동)
80년대 : 대체로 상승기
90년대 : 상승세(전반기), 급등세(후반기)
00년대 : 초반 하락세, 03 - 07 대세상승, 08년 급락,
09년 이후 급속한 회복세
89
Dow Jones 산업평균지수
▶
다우존스 산업평균지수(DJIA: Dow Jones Industrial
Average)는 뉴욕 증권거래소 (NYSE: New York Stock
Exchange)의 대표지수로 GE, GM, IBM, AT&T 등
우량주(blue chip) 30개 종목의 산술평균임.
▶
1896년 Wall Street Journal 편집장이던 찰스 다우
(Charles Dow)에 의해 12개 종목을 대상으로 하는
지수로 출발, 오늘날 가장 전통있고 널리 사용되는
주가지수로 자리잡음.
▶
뉴욕증시의 ¼ 정도를 대표하지만 세계 주가 총액의
절반이 거래되는 뉴욕증시의 상징으로 인식되는
지수이며 편입된 30개 기업은 업종의 대표성이
약화 되거나 기업의 가치가 떨어지면 다른 종목으로
언제든지 교체될 수 있음.
90
▶
2008년 2월, 알트리아(Altria Group)와 하니웰(Honeywell
International)이 사업축소 또는 실적악화에 따른
비중감소 등의 이유로 빠지고 Bank of America와
Chevron이 편입되었으며 2008년 9월에는 금융위기
여파로 정부의 850억불 구제금융을 통해 파산을 모면한
AIG가 빠지는 대신 식품회사 Kraft Foods가 새로
편입됨.
▶
2009년 6월에는 파산신청 들어간 GM이 탈락함. 또한
450억불의 구제금융을 수혈 받는 대신 40% 가까운
지분을 정부에 넘김으로써 사실상 국유화되고 만 시티
그룹도 퇴출됨. 대신 보험회사인 트레블러즈(Travelers
Companies) 와 네트워크 장비업체인 시스코(Cisco
Systems)가 새로이 편입됨.
91
▶
2012년 9월에는 북미대륙의 식료품 사업을 분사(分社)
해 사업규모가 축소된 크래프트 식품(Kraft Foods)이
빠지고 대신 유나이티드 헬스 그룹(UnitedHealth Group)이
새로 편입됨.
▶
1896년 출범 당시의 12개 편입종목 중에서 현재까지
남아있는 회사는 GE가 유일함.
▶
종목구성 변경에 대한 결정은 Wall Street Journal의
수석 편집진에 의해 이루어짐.
▶
한편 또 하나의 대표적인 주가지수인 S&P 500지수의
경우 포괄범위가 더 광범위할 뿐만 아니라 지수산출
방식도 Dow처럼 개별종목 산술평균이 아니라
시가총액을 토대로 하고 있음. 그러나 이 둘 지수의
움직임을 보면 매우 밀접하게 같은 방향으로 움직임.
92
Dow Jones 산업평균지수 30개 회사
2012년11월 현재
편의제품 개발, 제조업체. 3M Co.
(생활가전, 통신, 의료, 광고, 화학,사무용품 제조업체)
알루미늄 제조업체. Alcoa Inc.
(항공기, 자동차, 음료수 캔, 화학제품, 스포츠 제품 등 )
금융, 여행, 엔터테인먼트 상품 American Express Co.
전신전화회사 AT&T
뱅크 오브 아메리카 은행 지주회사 Bank of America Corp
미국 항공기 제작 회사 Boeing Co.
93
중장비 기계 제작업체 Caterpillar Inc.
( 트랙터, 트럭, 구레이더, 불도저 등. )
정유 및 종합에너지회사 Chevron Corp.
(석유 및 천연가스탐사, 정유, 주유소 사업 등..)
보험회사 Travelers Companies, Inc.
(각종 손해보험 및 개인보험 등)
청량음료제조업체 Coca-Cola Co.
( 코카콜라, 스프라이트, 파워에이드, 네스티 등.. )
화학제품 전문회사 Dupont
(섬유, 전자, 화학, 건설, 건축, 생활용품 등… )
미국석유화학회사 Exxon Mobil Corp.
(석유 및 천연가스탐사, 정유, 주유소 사업 등..)
미국전자회사 General Electric Co.
(가전, 항공기 엔진, 발전설비, 금융, 플라스틱 등)
94
네트워크 장비업체 Cisco Systems, Inc.
(네트워크 장비 제조, 네트워크 보안, 관리 시스템 등)
컴퓨터& 사무기기제조업체 Hewlett-Packard Co.
( 데스크탑, 노트북, PDA, 프린터... )
건축자재 전문회사 Home Depot Inc.
(각종 전문건축자재… )
반도체 전문업체 Intel Corp.
(CPU, 메인보드, 그래픽카드 등..)
컴퓨터 전문회사 International Business Machines Corp.
(데스크탑, 노트북, 워크스테이션, 소프트웨어..)
보건의료용품 제조회사 Johnson & Johnson
(의료용품, 유아용품, 화장품..)
종합금융투자은행 JPMorgan Chase & Co.
(금융, 보험, 신용, 기업공개... )
95
건강 및 의료서비스 그룹 UnitedHealth Group, Inc.
(United Health Care, Ovations 등)
맥도날드 패스트푸드 체인점 McDonald's Corp.
의약품 전문업체. Merck & Co. Inc.
소프트웨어 전문업체 Microsoft Corp.
(window, Office, 컴퓨터주변기기, X-box..)
의약품 전문업체 Pfizer Inc.
(비아그라, 노바스크, 리피트 ...)
생활용품 제조업체 Procter & Gamble Co.
( 팬틴, 비달사순, 위스퍼, 프링글스, 비누, 세제...)
항공우주산업 업체 United Technologies Corp.
(항공기, 헬리콥터, Otis엘리베이터, 보안, 연료전지..)
96
정보통신 전문업체 Verizon Communications Inc.
(국제다이얼업, DSL, 무선인터넷… )
대형할인매장 체인 Wal-Mart Stores Inc.
영화제작사 Walt Disney Co.
(라이온킹, 뮬란, 미녀와 야수, 니모를 찾아서...)
$
AIG의 주가 추이
97
◈ 주가 움직임에 대한 몇 가지 거시적 고찰 ◈
주식투자는 기본적으로 기업의 현재 실적과 특히
미래실적에 대한 예상을 토대로 하는 것이므로
주가지수는 실물경제 흐름과 맞물려 움직이기 마련임.
▫ 따라서 주가를 흔히 ‘실물경제를 반영하는 거울’로
표현함.
▶ 그러나 경기전환점과 주가지수의 대세전환점이 반드시
일치하는 것은 아니며 주가지수 움직임은 대체로
경기전환점을 수개월 선행 또는 후행함.
▫ 이를테면 증시침체기에는 주가지수가 경기저점 보다
4-6개월 앞서서 회복세를 보이기 시작하고 증시
활황기에는 경기고점을 4-6개월 후행해서 하락세로
접어들게 되는 것이 보통임.
▶
98
▶
급격한 과잉유동성은 필연적으로 주식시장(및 부동산
시장)의 과열로 이어져 투기적 거품 (speculative bubble)
을 초래하게 된다. 자산가격의 거품은 결국 꺼질 수 밖에
없고 그와 함께 경기가 급랭하면서 경제는 장기불황에
빠지게 됨을 흔히 본다. (20년대 후반 미국의 거품경제,
80년대 후반 일본의 거품경제, 2008년 미국 금융위기)
▫ 20년대 후반의 미국경제:
(1) 산업(전기, 철도 등)의 비약적 발전, 높은 국내
저축률, 대유럽 무역흑자 지속
(2) 영국, 프랑스, 일본의 무역수지 개선 위한 긴축 정책
(3) 미국의 수출감소와 상품 공급과잉, 투자 감퇴, 물가
하락
(4) 투자부진 심화 속에 넘치는 유동성이 부동산과
주식시장 과열초래
99
미국의 주가 추이 (대공황 당시)
(S&P 500, 1910 - 1954; 69/12/31=100 )
40
35
30
20년대 후반의
주식거품
25
약 25년
20
15
10
5
0
10
15
20
25
30
35
40
45
50
100
미국의 주가 추이 (70년대 유류파동의 영향)
(Dow Jones 산업평균지수; 72년 1월 – 81년 12월)
1050
1000
950
900
850
800
750
700
650
600
550
72
73
74
75
76
77
78
79
80
81
101
미국의 주가 추이 (87년 Black Monday 대폭락)
(Dow Jones 산업평균지수; 83년 1월 – 90년 12월)
3000
2800
2600
2400
2200
2000
1800
1600
1400
1200
1000
1983
1984
1985
1986
1987
1988
1989
1990
102
미국의 주가 추이
(Dow Jones 산업평균지수; 72년 1월 – 12년 10월)
14000
12000
10000
8000
6000
4000
2000
0
72 75 78 81 84 87 90 93 96 99 02 05 08 11
103
미국의 최근 주가 추이
(Dow Jones 산업평균지수; 00년 1월 – 12년 10월)
14000
13000
12000
11000
10000
9000
8000
7000
00 01 02 03 04 05 06 07 08 09 10 11 2012
104
추가자료
우리나라의 종합주가지수 추이
(KOSPI; 81년 1월 – 12년 10월, 월평균)
Korea Composite Stock Price Index (KOSPI)
2000
1500
1110.5(11/94)
965.9(3/89)
1000
500
496.3(8/92)
312.2(9/98)
0
81
83
85
87
89
91
93
95
97
99
01
03
05
07
09
11
105
우리나라와 미국의 종합주가지수 추이 비교
(코스피와 다우; 81년 1월 – 12년 10월, 월평균)
14000
12000
10000
8000
6000
4000
2000
0
81
83
85
87
89
91
93
95
97
99
01
03
05
07
09
11
106
종합주가지수 이동평균 추이
(KOSPI; 07년 10월 1일 – 07년 11월 20일, 일평균)
2100
5일 이동평균
2050
2000
•
1950
D
•
•
G
D
D
•
20일 이동평균
1900
•
60일 이동평균
1850
120일 이동평균
1800
1750
10월
11월
107
• 가장 흔히 사용되는 이동평균선
▫ 5일 이동평균: 주간 주가 이동평균
금리와 밀접한 관계
▫ 20일 이동평균: 월간 이동평균
▫ 60일 이동평균: 3개월 이동평균 : 수급과 밀접한 관계
▫ 120일 이동평균: 6개월 이동평균 : 경기와 밀접한 관계
• Cross 분석
▫ 골든 크로스(Golden Cross): 단기 이동평균선이 중장기
이동평균선을 아래에서 위로 뚫고 올라가는 것.
▫ 데드 크로스(Dead Cross): 반대로 단기 이동평균선이
중장기 이동평균선을 위에서 아래로 뚫고 내려가는 것.
• 지지선/저항선 분석
▫ 뚫고 올라갈 때는 중.장기선이 저항선으로 작용할 수
있고 (맥없이 뚫리면 그 만큼 투자심리가 강함) 그 반대일
때는 중.장기선이 단기선에 대해 지지선으로 작용하는
경우가 흔히 있다.
108
부록 B
랜덤워크란 무엇인가
주가, 환율 등과 같은 자산가격을 비롯해 다수의
거시경제변수들이 임의보행(random walk)을
따르는 것으로 알려져 있음. 임의보행을 따르는
경제변수는 시간의 경과와 함께 분산값이 무한히
커지는 등 불안정한 특성을 보임.
☞ 이 부록의 내용을 요약하면 주가는 술 취한 사람의
비틀거리는
모습을 뒤에서 바라보는 것과 같이 예측이 어려운
운행법칙을
따른다는 것임. (가벼운 마음으로 읽어보기 바람.)
표류항 없는 임의보행(Random Walk without Drift)
많은 실증분석을 통해 환율은 임의보행(random walk)을
따르는 시계열로 보게 됨. 우선 아래와 같이 백색잡음
이라고 불리는 가상의 시계열을 생각해 보자.
Let  t = 백색잡음(white noise): 임의오차항(random error
term) 또는 임의충격(random shock)으로 부르기도 함.
:1) 평균이 0이고 2) 분산이 일정하며 3)자기계열상관이
없는 완벽하게 임의적(무작위적)인 확률 시계열임.
1) 0의 평균값: E(  t )  0
2) 일정한 분산값: Var(  t )   2
3) 자기계열상관 없음:
Cov(  t ,  s )  E  t  E ( t )  s  E(  s ) 
 E(  t  s )  0 for t  s
110
백색잡음 시뮬레이션
t
~
(  1)
2
N(0,1)
전혀 예측이 불가능한 제 멋대로 미쳐 날뛰는 시계열임.
단, 평균값은 0이고 변동성(분산)은 일정한 상태임.
111
이 때 아래 조건을 만족하면 시계열 St는 랜덤워크이다.
S t  S t -1   t
or (  S
t
 t )
‥ (1)
랜덤워크의 기본 개념:
어떤 시계열의 오늘 [내일]의 값은 어제 [오늘]의 값에
예측불가능한 임의충격항을 더한 것과 같다.
주어진 시계열이 0의 시점에 S0의 값에서 출발했다고 가정할
때 아래의 결과를 얻을 수 있다.
S1 - S 0   1
S 2 - S1   2
S3 - S2   3
t
St  S0 

i
‥ (2)
i 1
St는 초기값 S0에 무작위 충격항
들의 합을 더한 것과 같다는 뜻.
+)
S t -1 - S t - 2   t -1
S t - S t -1   t
S t - S 0   1   2  ...   t
112

E(S t )  E  S 0 

평균
분산
Var(S
t

‥ (3)
)  E S t - E(S t )   t 
2
Var(S
)  E S t - E(S t ) 

  i   S0
i 1

t
t

 E S 0 

2
2
2



  i - S0   E   i 
i 1

 i 1 
t
t
‥ (4)
2
 E  1   2     t  2  1 2  2  1 3    2  t 1 t
2
2
2

 E(  1 )  E(  2 )    E(  t )
2
2
2
 2 E(  1 2 )  2 E(  1 3 )    2 E(  t 1 t )
∥
0

2
 
2
2
 t
∥
0
∥
0
2
113
조건부 기대값
E(S
E(S
t 1
S t , S t -1 ,  )  S t
‥ (5)
E(S
ts
S t , S t -1 ,  )  S t ( for any s  0 )
‥ (6)
t 1
S t , S t -1 ,  )  E(S t   t  1 S t , S t -1 ,  )
 E(S
E(S
t2
S t , S t -1 ,  )  E(S
t
S t , S t -1 ,  )  E(  t  1 S t , S t -1 ,  )  S t
t 1
  t  2 S t , S t -1 ,  )
 E( (S t   t  1 )   t  2 S t , S t -1 ,  )
 E( S t S t , S t -1 ,  )  E(  t  1 S t , S t -1 ,  )
 E(  t  2 S t , S t -1 ,  )  S t
Similarly, E(S
t3
S t , S t -1 ,  )  E(S
t4
S t , S t -1 ,  )    S t
114
S t  S t -1   t
 1
2
순수 임의보행 시계열의 시뮬레이션(모의 실험)
초기값을 임의로 주고 백색잡음 시계열을 생성시켜 랜덤워크 식을
만족하는 시계열을 계량프로그램 이용해 만들어 본 것임.
환율움직임과 진짜 많이 닮았음.
115
랜덤워크의 특성
① 평균값이 일정하다(= 초기값과 같다)
② 시간의 경과와 함께 분산 값이 무한히 커진다. (따라서
임의보행 시계열은 “불안정(nonstationary”하다.)
③ 특정 충격항의 영향은 절대 소멸되지 않는다.(따라서
임의보행 시계열은 “무한한 기억(infinite memory)”을
가진다.)
t
St  S0 
  에서 만일 S2가 0대신에 2라고 하면 S2
i
i 1
이후의 모든 S값들은 2단위 더 커지게 되며 이러한
충격의 영향은 소멸되지 않고 남게 된다.
④ 시계열의 오늘 값은 모든 미래 값의 최선의 예측치이다.
방정식 (5)와 (6)을 참조(예측이 매우 어렵다는 뜻.)
116
표류항 있는 임의보행(Random Walk with a Drift)
Ex) 주가, GDP 시계열 등
상방 또는 하방으로 어떤 뚜렷한 방향성을 갖고 움직이는
시계열의 경우 어느 한쪽 방향으로 움직이려는(표류하려는)
그러한 성질을 아래와 같이 모형화 할 수 있다.
즉, 표류항을 갖는 시계열 St 는 아래와 같이 나타내진다.
S t    S t -1   t
or (  S t     t )
‥ (7)
δ는 “표류항(the drift parameter)” 또는 절편이라고 함.
If δ > 0, St 는 상방으로 표류하는 경향이 있음.
If δ < 0, St 는 하방으로 표류하는 경향이 있음.
여기서 시계열 St의 변화의 평균값은 항상 δ와 같음.
즉, E(Δ St) = δ 임.
117
주어진 시계열이 0의 시점에 S0의 값에서 출발했다고 가정할
때 아래의 결과를 얻을 수 있다.
t
St  S0   t 

i
‥ (8)
i 1
즉, St는 선형 확정추세, S0 + δt 와 무작위
충격항들의 합과 같다.
S 2    S 1   2    (  S 0   1 )   2  2   S 0   1   2
S 3    S 2   3    ( 2  S 0   1   1 )   3
 3  S 0   1   1   3

t
St  t   S0  1   2    t  S0   t    i
i 1
118
평균
t


E(S t )  E  S 0   t    i   S 0   t
i 1


‥ (9)
t


E(S t  s )  E  S 0   (t  s)    i   S 0   ( t  s) ‥ (10)
i 1


분산
Var(S
)  E S t - E(S t )   t 
t
2
2
‥ (11)
(표류항 없는 랜덤워크 모형과 동일)
조건부 기대값
E(S
E(S
t 1
S t , S t -1 ,  )    S t
‥ (12)
ts
S t , S t -1 ,  )  s   S t ( for any s  0 )
‥ (13)
119
순수 랜덤워크 모형과는 달리 예측함수가 평평하지 않다는
점, 그리고 시계열 St의 평균적 변화크기는 항상 δ와 같다는
사실이 예측함수에 반영되고 있다는 점을 알 수 있다.
E(S
t 1
S t , S t -1 ,  )  E(   S t   t  1 S t , S t -1 ,  )
 E(   S t S t , S t -1 ,  )  E(  t  1 S t , S t -1 ,  )    S t
E(S
t2
S t , S t -1 ,  )  E(   S t  1   t  2 S t , S t -1 ,  )
 E(   (  S t   t  1 )   t  2 S t , S t -1 ,  )
 E( 2   S t S t , S t -1 ,  )  E(  t  1 S t , S t -1 ,  )
Similarly,
E(S
t3
 E(  t  2 S t , S t -1 ,  )
 2  S t
S t , S t -1 ,  )  3  S t

E(S
ts
S t , S t -1 ,  )  s   S t
120
표류항 가진 랜덤워크의 시계열적 특성
① 평균값은 더 이상 상수가 아니다.
E(S
ts
)  S 0   ( t  s)
② 시간의 경과와 함께 분산 값이 무한히 커진다.
③ 특정 충격항의 영향은 절대 소멸되지 않는다.
t
(8)식으로부터 알 수 있음;
St  S0   t 

i
i 1
④ 시계열의 내일 값의 최선 예측치는 오늘 값에 표류항
δ를 더한 것과 같다. 오늘부터 s일째 되는 날의 값에
대한 최선 예측치는 표류항에 s를 곱해준 값을 오늘
값에 더한 것과 같다. 방정식 (12)와 (13) 참조
121
S t    S t -1   t
  2 ,   10,000
2
표류항이 있는 랜덤워크의 시뮬레이션
계량프로그램을 이용한 모의실험을 통해 생성시킨 표류항 있는
랜덤워크 시계열인데 주가 움직임과 매우 흡사함.
122