Transcript 中心图形复习2
一、预习检测
1.在天气预报图上,有各种各样表示天气的符号,下列表示天气
符号的图形中,既是中心对称图形又是轴对称图形的是( A )
晴
冰雹
雷阵雨
大雪
A
B
C
D
2.如图,平行四边形ABCD中,∠C=108°,BE平分∠ABC,
则∠ABE=(
B ).
A、 18° B、36° C、72° D、108° D
C
E
A
B
D
C
A
B
3.已知:四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,
AB=CD或AD//BC或∠A=∠C ……
需添加一个条件是:
(只需填一
个你认为正确的条件即可)。说明你的理由。
4.下列性质菱形不一定具备的是
(
A
A、对角线相等
B、四条边都相等
C、对角线互相平分
D、对角线互相垂直
)
5.下列各组条件中,能判定四边形ABCD为矩形的是(
B
A、AB∥CD,AB=CD
B、AB∥CD,AB=CD,AC=BD
C、AB∥CD,AB=CD,AB=BC
D、AB∥CD,AD=BC,AC=BD
6.菱形边长为13,一条对角线长为10,则它的面积是
A
D
O
B
C
120
)
。
7.如图,在矩形ABCD中, AB=20cm,BC=4cm,动点P从A开始沿AB边
以每秒4cm的速度向B运动;动点Q从点C开始沿CD边以每秒1cm的
速度向D运动,如果P、Q分别从点A、C同时出发,当其中一点到达
端点时,另一点也随之停止运动,设运动时间为t秒。
则: (1)当t=1秒时,四边形APQD的面积是
(2)当t=
4
秒时,四边形APQD为矩形。
Q
D
A
46
P
C
B
㎝2
例题分析
8、矩形ABCD的对角线相交于点O,DE//AC,
CE//DB,CE、DE交于点E,
问:四边形DOCE的对角线DC与EO有什么关系?请
说明理由。
解: DC、EO互相垂直平分
E
∵ DE//AC,CE//DB
D
C
∴四边形DOCE为平行四边形
∵四边形ABCD为矩形
∴OC=OD
O
A
B
∴四边形DOCE为菱形
∴DC、EO互相垂直平分
9、如图,在△ABC中,D是BC边上的一点,点E
是AD的中点,过点A作AF//BC交CE的延长线于点F,
且AF=BD,连接BF,
(1)说明:BD=CD;
(2)如果AB=AC,试判断四边形AFBD的形状,并证
明你的结论。
A
F
(3)在第(2)问的
条件下再给△ABC添加
一个条件,使四边形
AFBD为正方形。
E
B
D
C
10.如图①,在正方形ABCD中,对角线AC、BD相交于点O,E是AC上
一点,F是OB上一点,且OE=OF,回答下列问题:
(1)图①中△OAF变化到△OBE的位置,可以通过平移、旋转、翻
折中的哪一种变化.
(2)猜想AF与BE之间的关系并说明猜想的正确性.
(3)如图②,点E、F分别在OC、OB的延长线上且OE=OF,第(2)
题中的结论还成立吗?说明理由.
A
A
D
O
O
F
B
D
E
G
ͼ¢Ù
G
C
B
F
C
ͼ¢Ú
E
应用拓展
11.如图,四边形ABCD中,AD∥BC,F是CD的中点,连结AF并延长
交BC延长线于点E。
(1)图中哪两个三角形可以通过怎样的旋转而相互得到?
(2)四边形ABCD的面积与图中哪个三角形的面积相等?
(3)若AB=AD+BC,∠B=70°,试求∠DAF的度数。
A
D
F
B
C
E