1 不定积分的概念及其性质

Download Report

Transcript 1 不定积分的概念及其性质

第三章
一元函数积分学
Chapter 3 Integral Calculus of
One Variable Functions
§1 The Concept and Properties of
Indefinite Integrals
一、Concept of Antiderivatives and Indefinite
Integrals
Def.1 A function F ( x ) is called an antiderivative
of f ( x ) on an interval I if F ( x )  f ( x ) for
all x in I .
Eg.

1
 ln x   ( x  0),
x
1
 ln x is an antiderivative of on (0,+ ).
x
1
[ln(  x )] 
x
( x  0),
1
 ln(  x ) is an antiderivative of on (-,0).
x
原函数存在定理(Existence Theorem of Antiderivatives):
Let f ( x ) be continuous on the interval I ,
then there exists derivable function F ( x ) on I,
Such that for any x  I , F ( x )  f ( x ).
In words, the continuous functions must have
antiderivatives.
Questions: (1) Is there only one antiderivative?
(2) If not, is there any relations?
Eg.
sin x   cos x

sin x  C   cos x
(C is a constant )
原函数的表示(Representation of Antiderivatives)
If F (x) is an antiderivative of f (x) on an interval I,
then G(x) is an antiderivative of f (x) on an interval I
if and only if G(x) is of the form G(x)=F (x)+C, for all
x∈I, Where C is a constant.
Proof.

 G ( x )  F ( x )
 G( x )  F ( x )
 f ( x)  f ( x)  0
 G( x )  F ( x )  C
 G( x )  F ( x )  C .
Definition of Indefinite Integral :
On the interval I, the antiderivative of f (x) with any
constant is called the indefinite integral of f (x) on I,
denoted by  f ( x )dx .
Any Constant
Integral Variable
Integrand Expression
Integral Sign
Integrand
 f ( x )dx  F ( x )  C
Eg.1 Evaluate  x 5dx .

6
x 
x
5
5


x
,


Sol.
  x dx 
 C.
6
 6
6
1
dx.
2
1 x
1

Sol.  arctan x  
,
2
1 x
1
 
dx  arctan x  C .
2
1 x
Eg.2 Evaluate 
Eg.3 If a curve passes (1, 2 ) and the tangent slope
is always twice of point of tangency’ s horizontal
coordinate, find the curve’s equation.
Sol. Suppose the equation of the curve is y  f ( x ).
Hence
dy
 2x ,
dx
i.e. f ( x ) is an antiderivative of 2 x .
  2 xdx  x  C ,
2
 f ( x)  x  C ,
2
And the curve passes (1, 2 )  C  1,
Therefore, the equation is y  x  1.
2
According to the definition of indefinite integral,
we know
d
dx
 f ( x)dx  f ( x),
d [  f ( x )dx ]  f ( x )dx ,
 F ( x )dx  F ( x )  C ,
 dF ( x )  F ( x )  C .
Tips:The operations of Differential and
Indefinite Integral are mutually inverse .
二、基本积分表(Basic Integration Tables)
 1

x 
Example 
  x 
   1
 1
x

x
 dx    1  C .
(   1)
Thinking process
Getting the formula of indefinite integrals
from the formulas of differential?
Tips Because the operations between differential
and indefinite integral are mutual inverse, we
can get the formula of indefinite integrals from
the formulas of differential
Basic Integration Tables (1)
(1)
 kdx  kx  C
( k is a constant );
 1
x

( 2)  x dx 
 C (  1);
1
dx
( 3) 
 l n | x | C ,
x
dx
Tips: x  0,  
 ln x  C ,
x
1
1
(  x )  ,
x  0, [ln( x )] 
x
x
dx

 ln(  x )  C .
x
1
arctan
x

C
;
( 4) 
dx

1  x2
1
( 5) 
dx  arcsin x  C ;
2
1 x
(6)  cos xdx  sin x  C ;
(7)
( 8)
 sin xdx   cos x  C ;
dx
2

sec
xdx  tan x  C ;
 cos2 x 
dx
(9)  2   csc2 xdx   cot x  C ;
sin x
(10)  sec x tan xdx  sec x  C ;
(11)  csc x cot xdx   csc x  C ;
x
x
e
dx

e
 C;

x
a
x
 C;
(13)  a dx 
ln a
(14)  sinh xdx  cosh x  C ;
(12)
(15)  cosh xdx  sinh x  C ;
Eg.4 Evaluate  x 2 xdx .
Sol.
5
2
2
x
 xdx   x dx
Using formula (2)
5
1
2
x
7
x
2 2

 C  x  C.
5
7
1
2

dx 
x
 1
 1
C
三、The Properties of Indefinite Integrals
(1)
 [ f ( x )  g( x )]dx   f ( x )dx   g( x )dx;

 f ( x )dx  g ( x )dx 





   f ( x )dx     g ( x )dx   f ( x )  g( x ).
Proof
 We have proved (1).
( This is true when it is the sum of finite functions )
( 2)
 kf ( x )dx  k  f ( x )dx .
( k is a constant, k  0)
3
2
Eg.5 Evaluate  (

)dx .
2
2
1 x
1 x
3
2
Sol.  (

)dx
2
2
1 x
1 x
1
1
 3
dx  2 
dx
2
2
1 x
1 x
 3 arctan x  2 arcsin x  C
Eg.6 Evaluate
Sol.
x
x
x
x
2
(e

5)d
x

[(2e)

5

2
]dx


x
x
2
( 2 e)
5

C
ln 2
ln( 2 e)
x

e
5 
x
2 

 C
 ln 2  1 ln 2 
Eg.7 Evaluate
Sol.
2
2
tan
x
d
x

(sec

 x  1)dx
  sec2 xdx   dx  tan x  x  C
Eg.8 Evaluate
1  x  x2
x  (1  x 2 )
Sol. 
dx  
dx
2
2
x (1  x )
x (1  x )
1
1

dx   dx  arctan x  ln x  C
2
x
1 x
1  2x
dx .
Eg.9 Evaluate  2
2
x (1  x )
2
1  2x
1  x2  x2
dx   2
Sol.  2
dx
2
2
x (1  x )
x (1  x )
2
1
1
  2 dx  
dx
2
x
1 x
1
   arctan x  C .
x
x4
Eg.10 Evaluate 
dx .
2
1 x
x4
( x 4  1)  1
dx  
dx
Sol. 
2
2
1 x
1 x
( x 2  1)( x 2  1)  1

dx
2
1 x
dx
2
  ( x  1) dx  
1  x2
1 3
 x  x  arctan x  C
3
1
dx.
Eg.11 Evaluate 
1  cos 2 x
1
1
dx  
Sol. 
dx
2
1  cos 2 x
1  2 cos x  1
1
1
1
 
dx  tan x  C .
2
2 cos x
2
Tips:First change the form of the integrand,
then apply the formula in basic integration
tables.
Eg.12 A curve y  f ( x ) has the tangent slope
sec x  sin x at the point ( x , f ( x )) , and the
2
intersection with y axis is (0,5) , find the
equation of the curve.
Sol.  dy  sec2 x  sin x ,
dx
2
 y   sec x  sin x dx
 tan x  cos x  C ,
 y(0)  5,
 C  6,
The equation of the curve is y  tan x  cos x  6.
内容小结
1. 不定积分的概念
• 原函数与不定积分的定义
• 不定积分的性质
• 基本积分表
2. 直接积分法:
利用恒等变形, 积分性质 及 基本积分公式进行积分 .
分项积分
常用恒等变形方法
加项减项
利用三角公式 , 代数公式 ,
思考与练习
1. 证明
2. 若
1 2
 x C
2
2
x
 f (ln x) d x 
 e
提示:
f (ln x)   e
 ln x
x
1

x
3. 若

是 e  x 的原函数 , 则
1
f (ln x)
 C0 ln x  C
d x x
x
提示: 已知 f ( x)  e  x
x
 f ( x )   e  C0
1
f (ln x)    C0
x
f (ln x)
1 C0
 2 
x
x
x
4. 若
则
的导函数为
是( B
的一个原函数
).
( A) 1  sin x ;
( B) 1  sin x ;
(C ) 1  cos x ;
( D) 1  cos x .
提示: 已知
求
即
f ( x)  sin x
( ? )  f ( x)
( ? )  sin x
或由题意 f ( x)   cos x  C1 , 其原函数为
 f ( x) d x   sin x  C1x  C2
5. 求下列积分:
提示:
(1)
2
2
1
1
1
1
( x ) x



2
2
2
2
2
2
x 1 x
x (1  x )
x (1  x )
1
sin 2 x  cos 2 x
(2)

2
2
sin x cos x
sin 2 x cos 2 x
 sec x  csc x
2
2
6. 求不定积分
解:
7. 已知

x2
1  x2
dx  A x 1  x  B 
2
求A,B.
解: 等式两边对 x 求导, 得
x
2
1  x2
 A 1 x 
Ax
2

1  x2
( A B)  2 Ax
1  x2
A B  0

 
  2A  1
2

B
1  x2
2
 A   12

1
B


2
dx
1  x2
练习题
一、填空题:
1、一个已知的函数,有______个原函数,其中任意
两个的差是一个______;
2、 f ( x ) 的________称为f ( x ) 的不定积分;
3、把 f ( x ) 的一个原函数F ( x ) 的图形叫做函数f ( x )
的________,它的方程是y  F ( x ) ,这样不定积
 f ( x )dx 在几何上就表示________,它的方程是
y  F ( x)  C ;
'
F
( x)  f ( x) 可 知 , 在 积 分 曲 线 族
4、由
y  F ( x )  C ( C是任意常数 ) 上横坐标相同的点
处作切线,这些切线彼此是______的;
f ( x)
f ( x)
5、若
在某区间上______,则在该区间上
的
原函数一定存在;
6、 x xdx  ______________________;
dx
 _______________________;
7、 2
x x
8、 ( x 2  3 x  2)dx  _________________;
3
9、 ( x  1)( x  1)dx  _____________;
(1  x ) 2
dx  =____________________ .
10、 
x
二、求下列不定积分:
x2
dx
1、 
2
1 x
2 3x  5 2x
dx
2、
3x
cos 2 x
x
dx
3、  cos dx
4、
2
2
2
cos x sin x
1
5、  (1  2 ) x x dx
x
x 2  sin 2 x
2
sec
xdx
6、 
2
x 1
2
三、一曲线通过点( e 2 , 3 ) ,且在任一点处的切线的斜
率等于该点横坐标的倒数,求该曲线的方程 .
1 2x x
ex
x
四、证明函数 e , e sinh x 和 e cosh x都是
2
cosh x  sinh x
的原函数 .
练习题答案
一、1、无穷多,常数; 2、全体原函数;
3、积分曲线,积分曲线族; 4、平行; 5、连续;
5
3
2 2
2 2
6、 x  C ; 7、  x  C ;
5
3
x3 3 2
8、  x  2 x  C ;
3 2
5
3
x3 2 2 2 2
9、  x  x  x  C 、
3 5
3
3
5
4 2 2 2
2
x

x  x C.
10、
3
5
2 x
5( )
3
C;
二、1、 x  arctan x  C ; 2、2 x 
ln 2  ln 3
x  sin x
4.  (cot x  tan x )  C ;
C;
3、
2
2
4( x  7 )
C;
5、
6、tan x  arc cot x  C .
4
7 x
三、 y  ln x  C .