椭圆函数滤波器响应

Download Report

Transcript 椭圆函数滤波器响应

TOPIC 4
Filters Design
Basic
0dB
-3dB
1
Filters
Rp dB
Lowpass
Passband: 0 — fc (Hz)
Stopband: fx—∞ (Hz)
-Ax dB
fc
Rp dB
0dB
-3dB
-Ax dB
fx
3dB (Cutoff ) Frequency : fc (Hz)
Maximum Passband Attenuation : 3dB
Passband Ripple : Rp (dB)
Stopband Frequency : fx (Hz)
Minimum Stopband Attenuation : Ax
Highpass
fx
fc
Passband: fc—∞ (Hz)
Stopband: 0 — fx (Hz)
Basic of Filters
Rp dB
Bandpass
0dB
-3dB
-Ax dB
fLx fLp
fLp fLx
0dB
-3dB
fo
fo
fHp
fUx
fUx
fHp
-Ax dB
Rp dB
Bandstop
Lower passband edge = fLp
Upper passband edge = fHp
Lower stopband edge = fLx
Upper stopband edge = fUx
Passband Bandwidth = fHp - fLp
Passband Ripple = Rp dB
Maximun Passband Attenuation = 3dB
Minimum Stopband Attenuation = Ax
Center Frequency = fo =  fHp fLp
Lower passband edge = fLp
Upper passband edge = fHp
Lower stopband edge = fLx
Upper stopband edge = fUx
Stopband Bandwidth = fUx - fLx
Passband Ripple = Rp dB
Maximun Passband Attenuation = 3dB
Minimum Stopband Attenuation = Ax
Center Frequency = fo =  fHp fLp
Technical Parameters of Filter
Rp dB
IL:
Rp: Ripple in the passband
IL dB
Rejection
0dB
-3dB
BW
RF insertion loss
-Ax dB
BW: Difference between upper and
lower freqencies at which the
attenuation is 3 dB
SF:
Describing the sharpness of
the response with the ratio
between the Ax dB and the 3 dB
bandwiths
Rejection: it is parameter according
to the specification of a filter
fLx
fLp
fo
fHp
fUx
Qulity factor Q: Another parameter
describing filter selectivity
Q = f0 / BW
微波网络综合法设计滤波器
• 一般先设计低通原型滤波器,实际的低通高
通带通带阻滤波器可由低通原型变换得到。
• 微波网络综合法设计滤波器时,将整个滤波
器看成是多级二端口网络的级联,实际中这
些二端口网络是串连电感并联电容。
微波网络综合法设计滤波器
• 由转移参量可以得到整个滤波器的频率响应特性。
0
0  1
 A B  1 RG  1 R   1
C D   0 1  0 1   j C 1  1/ R 1 

 



L




1 
1   R  RG   j C 
 RG  RL 
RL 





1
j C 
1 

RL


S21= 2 / ( a + b + c + d ) 或
L = 10 log 1 / |S21|2 = 10 log |( a+b+c+d )/2|2
• 使频率响应满足指定的响应特性得到串连电
感并联电容的大小。
典型滤波器响应
• 实际的滤波器响应有以下几种:
最大平坦响应(Butterwoth响应)
等波纹响应(Chebyshev响应)
椭圆函数响应
线性相位响应
典型滤波器响应
最大平坦响应(butterwoth响应)
L = 1 + k2 ( ω /ωc )2N
式中N是滤波器阶数, ωc是截止频率,通带为(0,
ωc ),通带边缘损耗为 1 + k2,常选为-3 dB,故
k=1。 带外衰减随频率增加而单调增加, ω>>ωc
时, L ≈ ( ω /ωc )2N, 所以衰减以每10倍频 20N dB的
速率上升。
典型滤波器响应
等波纹响应(Chebyshev响应)
L = 1 + k2 [ TN( ω /ωc ) ]2
式中TN(x)是Chebyshev函数,其多项式表示
为 T1(x) =x T2(x) =2x2-1 T3(x) =4x3-3x
T4(x) =8x4- 8x2 +1 • • •
因为x<1时, |TN(x)|<1故通带内波纹为 1 + k2,常
选为-3 dB,故 k=1。 带外衰减随频率增加而单调
增加, ω>>ωc 时, 由TN(x)函数性质得到 L ≈ k2/4
( 2ω /ωc )2N, 所以衰减也以每10倍频 20N dB的速率
上升。但其衰减比最平坦响应大 22N/4
Chebyshev Low-Pass Filters
Response
Comparison
between Butterworht and Chebyshev Filters
0
0.25
0.5
B( 3   )
0.75
1
T( 0.25 3   ) 1.25
1.5
T( 0.5  5   ) 1.75
2
T( 1  7   )
2.25
2.5
2.75
3
3
0.1
0.1
0
where
0
0
10

1
1
20
B( 3   )
30
T ( 0.25  3   )
40
B(3, ): attennuation response of 3-order butterworth-type
50
T( 0.25, 3, ) ): attennuation response of 3-order chebyshev-type
T ( 0.5  5   )
60
with ripple of 0.25dB
T( 1  7   )
70
T( 0.5, 5, ) ): attennuation response of 5-order chebyshev-type
80
with ripple of 0.5dB
T(1, 7, ) ): attennuation response of 7-order chebyshev-type 90
100 100
with ripple of 1dB
1
1

10
10
Comparison of Frequency response between Butterworht and Chebyshev Filters
典型滤波器响应
椭圆滤波器(elliptic filter)是利用椭圆函数(elliptic function)
的双周期函数性质设计的。
就低通滤波器而言,如将巴特沃思滤波器与切比雪夫滤波器的幅频特
性加以比较,它们具有以下特点:
①在巴特沃思滤波器中,无论是通带还是阻带均表现为单调衰减,
并且不产生波纹;
②在切比雪夫滤波器中,通带内产生波纹,但阻带则为单调衰减;
③切比雪夫滤波器的截止特性比巴特沃思滤波器更为陡峭。
因而可以这样设想,如果在通带和阻带两方面都允许波纹存在,就能
得到截止特性比切比雪夫滤波器更为陡峭的滤波器。基于这种思路的滤
波器,就是由W.Cauer提出的椭圆滤波器。
典型滤波器响应
椭圆函数滤波器的衰减特性为:
2
LA  10 lg 
1


Cn( ) 


其中,Cn( ) 为  的分式有理多项式,其零点全部在通带  <1内,极点全部落
在阻带 >1内,具有如下形式
Cn( )  B
( 2  12 )( 2   32 )      
( 2   22 )( 2   42 )      
其中 1 3    为零衰减频率,2 4   为无穷衰减频率,零衰减频率的个数与
无穷衰减频率的个数相等。
这种衰减特性与契比雪夫滤波器衰减特性相比,有如下特点:
(1)通带内仍有契比雪夫滤波器响应的等波纹特性; (2)阻带内增加了有
限频率上的极点,也呈现等波纹特性;(3)过渡段区域的斜率更为陡峭。
椭圆函数滤波器响应
典型滤波器响应
线性相位响应
Φ(ω) = A ω[ 1 + p (ω /ωc )2N]
式中Φ(ω) 滤波器电压转移函数的相位,p为常数。
通常良好的截止响应特性与良好的相位响应是一
对矛盾。
还可以有其他的响应,上述4种是最常用的。
低通原型滤波器器件参数的确定
低通原型滤波器器件参数的确定是一个道理简单计算
复杂的过程。在低通原型滤波器中,一般取g0=1,
ωc=1。
L
1
对于N=2的低通原型,
其结构图如右图所示:
C
~
R
由微波网络级联可得此电路的响应为
L=1+[(1-R)2+(C2R2+ L2- 2LCR2)ω2 +L2C2R2ω4]/4R
最平坦响应为
L=1+ k2ω4
得到 R=1, L = C = 21/2
k=1 ω=1时衰减3dB
等波纹响应为
L=1+ k2(2ω 2-1)2
得到 R=5.81, L=3.1 C = 0.53
k=1 波纹3dB
低通原型滤波器器件参数的确定
一般低通原型滤波器的两种结构如下图所示。
rG=g0=1
~
L2=g2
C1=g1
Ln=gn
rL=gN+1=1
C3=g3
shunt capacitance series inductance
rG=g0=1
~
L1=g1
L3=g3
C2=g2
Cn=gn
rL=gN+1=1
series inductance shunt capacitance
图中器件的编号从信号源端的g0一直到负载端的
gN+1. 两个电路同一编号的器件取值相同,给出同样
的频响。因此它们互为对偶电路。
低通原型滤波器器件参数的确定
原则上,可求任意N阶低通原型滤波器的器件参数
值。但工程应用时,N过大不实际。对于最平坦响应
的低通原型滤波器。前人将至10阶滤波器的参数值列
表如下:
低通原型滤波器器件参数的确定
最平坦响应的低通原型滤波器至15阶时的衰减曲线如
下:
低通原型滤波器器件参数的确定
对于等波纹响应的低通原型滤波器,至10阶的滤波
器参数值列表如下(带内波纹0.01dB):
LAr = 0.01dB
n
g1
g2
g3
g4
g5
g6
g7
g8
g9
g10
1
0.0960 1.0000
2
0.4488 0.4077 1.1007
3
0.6291 0.9702 0.6291 1.0000
4
0.7128 1.2003 1.3212 0.6476 1.1007
5
0.7563 1.3049 1.5773 1.3049 0.7563 1.0000
6
0.7813 1.3600 1.6896 1.5350 1.4970 0.7098 1.1007
7
0.7969 1.3924 1.7481 1.6331 1.7481 1.3924 0.7969 1.0000
8
0.8072 1.4130 1.7824 1.6833 1.8529 1.6193 1.5554 0.7333 1.1007
9
0.8144 1.4270 1.8043 1.7125 1.9057 1.7125 1.8043 1.4270 0.8144 1.0000
g11
10 0.8196 1.4369 1.8192 1.7311 1.9362 1.7590 1.9055 1.6527 1.5817 0.7446 1.1007
低通原型滤波器器件参数的确定
等波纹响应的低通原型滤波器至15阶时的衰减曲线如
下:
低通原型滤波器器件参数的确定
对于线性相位响应低通原型滤波器,因为转移参量
的相位不像幅度那样有较简单的表达式,器件参数求
解更复杂。至10阶的滤波器参数值列表如下:
n
g1
g2
g3
g4
g5
g6
g7
g8
g9
g10
1
2.000
2
1.5774 0.4226 1.0000
3
1.255
4
1.0598 0.5116 0.3181 0.1104 1.0000
5
0.9303 0.4577 0.3312 .2090
0.0718 1.0000
6
0.8377 0.4116 0.31586 .2364
.1480
0.0505 1.00
7
0.7677 0.3744 0.2944 .2378
.1778
.1104
0.0375 1.0000
8
0.7125 .3446
0.2735 .2297
.1867
.1387
.0855
0.0289 1.000
9
0.6678 0.3203 0.2547 .2184
.1859
.1506
.1111
0.0682 0.0230 1.0000
10
0.6305 0.3002 0.23842 .2066
.1808
.15390 .1240
g11
1.0000
0.5528 0.1922 1.0000
0.0911 0.0557 0.0187 1.0000
低通原型滤波器器件参数的确定
最大平坦响应和等波纹响应低通原型滤波器经常用
到。有时通过查衰减曲线及查表得不到相应的阶数及
器件参数值,这时可依据滤波器相关指标,由公式计
算得到N及gn
Butterworth LowPass Filters1
Step1: Specification
Impedance: Zo (ohm)
Cutoff Frequency: fc (Hz)
Stopband Frequency: fx (Hz)
Maximum Attenuation at cutoff frequency: Ap (dB)
Minimum Attenuation at stopband frequency:Ax(dB)
Step 2: Determine the Number of elements,N is a integer
 fx 
10 Ax /10  1 
N  0.5  log  Ap /10  log  
 1
10
 fc 
Step 3: Calculate Prototype Element Values,gK。
(2 K  1)
g K  2  sin
,
2N
K  1,2,....,N
Chebyshev LowPass Filters2
Step1: Specification
Impedance: Zo (ohm)
Cutoff Frequency: fc (Hz)
Stopband Frequency: fx (Hz)
Maximum Attenuation at cutoff frequency: Ap (dB)
Minimum Attenuation at stopband frequency:Ax(dB)
Step 2: Determine the Number of elements,N is an odd integer that is to avoid
differrence between the input and output impedance
 1  Mag2 
arccos 
2
2 
 Mag× 
N
fx
arccos( )
fc
Mag 2  10 Ax / 10
 2  10rp / 10  1
Step 3: Calculate Prototype Element Values,gK。
g1 
2 A1a
g
4 AK 1 AKa 2
gK 
gK 1×BK 1
(2K  1)
AK  sin
, K  1,2,...,N
2N
gN+1=1 N奇数
gN+1=coth2(β/4) N偶数


a  cosh 1 cosh1  1 
  
N
2
2
BK  g  sin (
g  sinh
b
2N
rp 
K b  
lncoth
)
17.37

N
椭圆函数滤波器低通原型
两种椭圆函数低通滤波器原型电路
L2
L4
C1
C2
C3
C4
L1
L3
L2
L5
L4
C5
C1
C2
a)电容输入
b)电感输入
由滤波器的设计指标LAs(dB),  s 和LAr(dB),得到上述原型电路的系数,需要
用雅可比椭圆函数的保角变换技术,其数学推导和计算都比较繁琐。现已有图
标曲线,可供设计此类滤波器时查用。
下表给出了N=5 带内波纹衰减Lar=0.1的椭圆函数低通滤波器的系数
LAs
 s (dB) C1 C2 L2 C3 C4 L4 C5
1.309 35 0.977 0.2300 1.139 1.488 0.742 0.704 0.701
1.414 40 1.010 0.1770 1.193 1.586 0.530 0.875 0.766
1.540 45 1.032 0.1400 1.228 1.657 0.401 0.964 0.836
1.690 50 1.044 0.1178 1.180 1.726 0.283 1.100 0.885
s
L1
L2
C2
L3
L4
C4
L5
椭圆函数滤波器技术参数
LA
L As
L Ar
0
3 1  p s 4 2
LAs:阻带抑制
LAr:通带波纹

 s :阻带抑制频率
 p :通带截止频率
Frequency transformations from
normalized LPF to others
Lowpass
Prototype
Value
lowpass
pratical
value
highpass
pratical
value
bandpass
pratical
value
bandstop
pratical
value
BW L
1
L
L=gk
c
c
L
BW
L
o 2
BW
o 2 L
1
BW L
1
C=gK
C
c
1
c
C
C
BW
BW C
BW
o 2C
o 2   U  L
BW C
o 2
BW 
U - L
Examples of LPF design
Design a LC 1 dB ripple Chebyshev-type LPF(Zo=50 ohm) with 75MHz cutoff
frequency and at least 20dB attenuation at 100MHz
Solution:
Step1: Specification
Impedance: Zo (ohm)=50
Cutoff Frequency: fc (MHz)=75
Stopband Frequency: fx (MHz)=100
Maximum Attenuation at cutoff frequency: 3 (dB)
Minimum Attenuation at stopband frequency:20(dB)
Step 2: Determine the Number of elements
N=5
Step 3: Calculate Prototype Element Values,gK。
g1
2.2072
g2
1.1279
g3
3.1025
g4
1.1279
g5
2.2072
Step 4:Select shunt capacitance series inductance
C1
L2
C3
L4
Cal. value 93.658pF 119.67nH 131.65pF 119.67nH
Practical
94pF
120nH
132pF
120nH
C5
93.658pF
94pF
Result
Design of BandPass Filters
Step1: Specification
Impedance: Zo (ohm)
upper passband edge frequency: fPU (Hz)
lower passband edge frequency: fPL (Hz)
upper stopband edge frequency: fXU (Hz)
lower stopband edge frequency: fXL (Hz)
Maximum Attenuation at passband: Ap (dB)
Minimum Attenuation at stopband:Ax(dB)
Step 2: Determine the Number of elements,N is an odd integer that is to avoid
differrence between the input and output impedance
(1)For Butterworth Type
10
 1
0.5  log Ap / 10 
10
 1

N
log X 
Ax / 10
(2)For Chebyshev Type
 1  Mag2 

arccos 
2
2

 Mag× 
N
arccos(X )
f o  f PL  f PU
,
 f o2
 1
 X 1    f XL  
 f XL
 BWPass
 X  MIN ( X 1 , X 2 )
Mag 2  10 Ax / 10
 2  10rp / 10  1
BWpass  f PU  f PL
,

f o2  1
 X 2   f XU   
f XU  BWPass

Design of BandPass Filters2
Step 3: Calculate Prototype Element Values,gK, as before. Select series inductance shunt capacitance or shunt capacitance series inductance, then calculate
the values of C and L 。
a) series inductance shunt capacitance
Lsodd 
g odd  Zo
2  BWpass
,
Cpeven 
g even
2  BWpass  Zo
b) shunt capacitance series inductance
Cpodd
g odd

2  BWpass  Zo
Step 4:
Calculate the component
values of bpf。
Transformate the lowpass
prototype element values
to the bandpass ones
according the right
transformation table
,
g even  Zo
Lseven 
2  BWpass
prototype
bandpass
Transformation fomula
Cp
LP 
1
 o 2C P
CS 
1
 o 2 LS
Cp
Lp
Ls
Cs
Ls
 o  2f o
Example of BPF design
Design a 0.1 dB ripple Chebyshev-type BPF(Zo=50 ohm) with bandpass of
10MHz and central frequency at 75MHz, the Minimum Attenuation at stopband
has to be 30dB with 30MHz stopband
Step1: Specification
Impedance): Zo = 50 ohm
upper passband edge frequency: fPU = 75 + 5 = 80 MHz
lower passband edge frequency: fPL = 75 – 5 = 70 MHz
upper stopband edge frequency: fXU = 75 + 15 = 90 MHz
lower stopband edge frequency : fXL = 75 –15 = 60 MHz
Maximum Attenuation at passband: rp = 0.1 dB
Minimum Attenuation at stopband:Ax = 30dB
Step 2: determine the order of elements,N=3
 1  Mag2 
arccos 
2
2 

Mag

× 
N
arccos( X )
X  MIN (X1,X 2)  2.778
2

 1
f
 fo2
 1
o
 2.778
X1    fXL
 3.333 , X2   fXU 
fXU  BWPass

 f XL
 BWPass
fo  fPL ×fPU  74.83MHz ,
BWpass  fPU  fPL  10MHz
Result
Step 3: Calculate Prototype Element
Values,gK. Select shunt capacitance
series inductance type. Calculate the
values of L and C
rG=g0=1
L2=1.5937
rL=gN+1=1
~
C1=1.4329
C3=1.4329
Step 4: Calculate the component values of bpf according the transformation table。
Transformated
values of BPF
C1
456pF
L2
1268nH
C3
456pF
L1
10nH
C2
3.6pF
L3
10nH
Home work
1) Design a 0.5 dB ripple Chebyshev-type LPF(Zo=50 ohm) with
bandpass of 10MHz and central frequency at 75MHz, the Minimum
Attenuation at stopband has to be 20dB with 30MHz stopband, design
a Butterworth-type LPF with the same specification and do
comparison between them
2) Design a LC 0.1 dB ripple elliptic function LPF(Zo=50 ohm) with
75MHz cutoff frequency and at least 35dB attenuation at 98MHz. and
calculate its frequency responding curve by using ABCD matrix