Transcript Paper

The Criticalities of
Sandpile and Voter Models
Yi-Duen Wang and Chai-Yu Lin
Department of Physics, National Chung Cheng University
Outline
• Introduction to the properties of critical phenomena
( Ising model )
• Introduction to the self-organized criticality (SOC)
( Sandpile model )
• The generalized Ising model with Memory
( Voter model )
The properties of critical phenomena
Critical phenomena
• 物質從一個相(phase)轉變成另一個相----相變。相
變過程透過像是溫度、壓力或磁場等等的系統參
數調控。
• 系統產生相變的參數值對應為相變點,二階相變
的相變點稱為臨界點。
• 系統在臨界點附近有相干長度(correlation length)
無限大與自我相似(self-similarity)的特性。
Critical phenomena
• 自我相似性(self-similarity):
據觀察,系統在臨界點附近的物理量與調控參數
有 power law 的關係。例如 Ising model 在臨界點
附近其磁矩與化約溫度有 power law :
可解釋為系統在臨界點附近有自我相似的性質,
其物理量滿足
generalized homogeneous function 。
Critical phenomena
• Homogeneous function f(x) :
Critical phenomena
• The simulations of Ising model:
平均磁矩
磁化率
(PRB Vol. 13, Nu. 7 D. P. Landau 1976)
Finite-size scaling theory
• 臨界現象是巨觀的現象,而我們通常是在有限系
統大小下做模擬,勢必與真實的結果有些不同。
• 在有限系統中,在 ε=0 時,我們有興趣的物理量 f
與系統線性大小 L 有以下關係 :
在此 ε0 代表 ε=0。
( Physics Vol 2, No. 6, 263-272 (1966) L. P. Kadanoff )
Finite-size scaling theory
• Finite size scaling: (在兩種情況作模擬)
(在較大的 L 中模擬,改變 x)
(在 x = 0 時做模擬,改變 L)
(獲得整個函數)
Finite-size scaling theory
• Susceptibility of Ising model:
(PRB Vol. 13, Nu. 7 D. P. Landau 1976)
The self-organized criticality (SOC)
Self-organized criticality
• Self-organized criticality (自組臨界現象):
臨界現象在自然界是一種不易觀察到的現象,它
只發生在臨界點附近,而臨界點通常都要在實驗
室中透過嚴格地調整環境參數才能抵達。
• 而自然界中卻發現了許多例子,其量測的某些物
理量會遵守冪次定律。(例如地震的芮氏規模分布)
以相變的觀點來看,此時的系統是處於臨界態。
• 不需透過參數調整就會使自然地表現出臨界現象
的特徵,Bak, Tang 和 Wisenfeld 在 1987 年提出了
自組臨界現象的概念。
Self-organized criticality
• Self-organized criticality (自組臨界現象):
具有自組臨界性的系統都有反饋機制 (Feedback
mechanism) 。反饋機制有兩個特徵,一個是其擁
有外界提供的驅策力(driving force)使得系統的狀
態產生變動(增加能量) 。當能量持續累積時,系
統開始會釋放部分能量,此為反饋機制的第二個
特徵,耗散(dissipation) 。
• 這樣的反饋機制(平均的驅策率與耗散率)可以使
系統維持在穩態(steady state) 。由這兩個特徵不斷
地重覆進行,將使系統維持在臨界態附近。
Self-organized criticality
• Self-organized criticality (自組臨界現象):
1987年, Bak, Tang 和 Wisenfeld (BTW) 提出自組臨
界性的概念後,給出著名的 BTW 沙堆晶格模型
當作例子,隨後許多自組臨界現象的模型被建立。
• 沙堆晶格模型是藉由沙堆的堆疊當作是能量的累
積,當累積到一定高度之後將崩塌,而崩塌之後
將影響附近的沙堆(給予沙粒) ,進而可能產生連
續的崩塌。
• 紀錄參與崩塌的晶格點總數 s 與發生此事件的機
率,發現此物理量的機率分布 P(s) 滿足冪次行為
,即 P(s) ~ s-τ 。
Manna model
• Manna model :
Manna model 是一種沙堆晶格模型,它是由 S. S.
Manna 所提出的。其沙粒的崩落規則如下:
在晶格中的每個晶個點 i 給定一個沙堆高度 zi ,
並定義沙堆崩落的臨界高度 zc = 2。我們隨機地給
予晶格點沙粒,當任一沙堆的高度大於臨界高度
時將產生崩塌。每次崩塌時,崩塌的沙堆高度減
少 zc ,並隨機地給予鄰近晶格點共 zc 顆的沙粒。
當崩塌的沙粒超出邊界時,此沙粒將消失。
Manna model
• 透過加入一顆沙粒於系統中所引發的一連串崩塌
稱為一次雪崩。
• 當不斷地添加沙粒於系統中,系統將慢慢地朝臨
界態演化前進,為自組臨界系統(SOC)。其一次雪
崩的規模 Ns( 崩落總個數Nn或崩落的總面積Na) 與
其出現的機率分布 Ps (Ns) 有冪次定律關係:
• 除此之外,我們將作更多討論將此自組臨界系統
與臨界現象作更多對應。
Manna model
• By finite scaling method:
Manna model
• 除此之外,我們是否能將 Manna model 與臨界現
象作更多的對應?
• 是否存在調控參數 f 使得系統中的某物理量
A( f , L) 有下列關係 :
此時參數 f 代表離開臨界點的距離。
Manna model with bulk dissipation
• 為此,我們定義了內部耗散項 f。
Phys. Rev. E 74, 031304(2006) C. Y. Lin
International J. of Modern Phys. C Vol.20, No. 2 273
(2009) C. F. Chen
• Manna model with bulk dissipation :
具內部耗散的 Manna model 是在原始 Manna 模型
中增加一個內部耗散項,在每次崩落傳遞粒子的
過程中有 f 的機率粒子會耗散掉。
Manna model with bulk dissipation
• 系統參數在 f = 0 時為 Manna model, 在 Manna
model 中,每次雪崩的平均崩塌規模 <Ns> 與系統
γ
的線性大小 L 有冪次定律的關係,<Ns> ~ L s 。
• 當系統參數 f 不為 0 時,我們猜測系統將離開臨
界態,系統的平均崩塌規模 <Ns> 將與系統參數
f 有冪次定律之函數關係。透過模擬,我們在較
-β
大的晶格中發現了此冪次定律關係, <Ns> ~ f s 。
Manna model with bulk dissipation
• 對照 Susceptibility of Ising model:
Near critical point
At critical point
• 我們令特徵長度 (characteristic length)
,
Manna model with bulk dissipation
• 根據兩種極端的情況, L有限且f 為 0 (臨界點)與
L無限大 f 不為0 ,有以下兩種 finite size scaling :
• 當
,粒子的耗散完全是邊界耗散,Ns 與 LDs
比是客觀的量來描述崩塌規模大小。
• 當
,粒子完全是由內部耗散, Ns 與 ξ Ds 比
才是客觀的量來描述崩塌規模大小。
Manna model with bulk dissipation
• 根據特徵長度的分析,再作一次 finite size scaling :
•
是個客觀的量描述崩塌規模的大小,
客觀的量描述系統大小(耗散機制) 。
是個
•
是個客觀的量描述崩塌規模的大小,
客觀的量描述耗散機制。
是個
Manna model with bulk dissipation
• 為驗證推測的尺度化分析的正確性,我們準備 3
組不同量值的
,每組皆準備 4 種 (L , ξs) 使得
為定值。目的為確認系統的行為是否與推測
的變數
有關。
• 在這 12 種條件下,我們分別作模擬並將所得的結
果 Ps (Ns , L , f) 作尺度分析。經尺度分析,原本有
12 條函數線將疊合剩 3 條線,由擁有相同
的 4 種參數組合疊成 1 條線。
Manna model with bulk dissipation
Generalized Ising model with Memory
Original voter model
• Voter model is an agent-based model describing the dynamics
of opinions in a group. An agent changes his own opinion by
copying the opinion from one of his nearest neighbors.
• In physics, we use spin system to perform voter model. Spin
up and down represent two different opinions. A site changes
its spin by copying the spin of one randomly chosen nearest
site.
Ex:
1
0.75
0.5
0.25
0
Noisy voter model
• For noisy voter model, noise parameter “q” is introduced into
voter model.
• Noise parameter “q” is the probability of selecting the opposite
spin value of one chosen nearest neighbors.
Ex:
1*(1-q)
1-q
q
¾ (1-q)+ ¼q
¾ - ½q
¼+ ½q
½
½
¼ (1-q)+ ¾q
¼+ ½q
1*q
q
½
¾ - ½q
1-q
Generalized voter model
• The generalized voter model is the modification of noisy voter
model. There are two kinds of noise in the model on 2d square
lattice, bulk noise “qy” and interface noise “qx”.
• When the central site is fully surrounded by the same spin
value, it updates its spin value by bulk noise “qy”.
• For this case, it updates its spin value by interface noise “qx”.
Generalized voter model
• We set qy = ½(1-y) & qx = (½ - x). The flip probability of the
updating site “w” is organized as follows:
w ½(1-y)
½(1-x)
½
½(1+x)
½(1+ y)
w ½(1+ y)
½(1+x)
½
½(1-x)
½(1-y)
• For noisy model qy = qx , that is y=2x.
Phase diagram
a : majority voter
b : Ising model
c : noisy voter
J. Phys. A: Math. Gen. 26 (1993)
d : phase transition line
Top right corner:
Ferromagnetic
Bottom left corner:
Paramagnetic
Definition of the Memory
Simulation
• We perform the model on 2d square lattice with linear size “L”
by using Monte Carlo simulation. We start with a random
initial condition. For a time step, we randomly choose a site to
update by the rule of model. A Monte Carlo step(MCS)
represents L × L time steps.
• For the approach of the critical point, the relaxation time for
the magnetization in the largest system (L = 256) was found
to be order 105 (MCS).
Simulation
the magnetization of
the system with a fixed value
y.
By varying the parameter x,
there is a phase transition.
N=L ×L : system size
σ i : spin value of site i
Magnetization :
Simulation
To figure out the critical point
more accurately, we calculate the
Binder cumulant.
N=L ×L : system size
σ i : spin value of site i
Binder cumulant:
Simulation
Mean Field Analysis
• We set the variable pi to be the probability of positive spin
locating at the ith position in the memory, where the first
position refers to the top site of the memory and the rth
position refers to the bottom site in the memory space.
( 1- pi is the probability of negative spin at ith position )
Mean Field Analysis
Simulation & Mean field approach
Mean Field Analysis
Conclusions
• The network of voters should be located at somewhere
between the regular lattice and fully connected network from
the viewpoint of the interactions of voters.
• We introduce a generalized voter model with memory. By
using Monte Carlo simulation , we obtain the phase diagram
on the two-dimensional square lattice and fully connected
network.
• The results of mean field analysis are well consistence with
those of simulations.