Clase 7: Movimiento en 2D: Mov. Circular

Download Report

Transcript Clase 7: Movimiento en 2D: Mov. Circular

Física para Ciencias:
Movimiento circular uniforme
y velocidad relativa
Dictado por:
Profesor Aldo Valcarce
1er semestre 2014
FIS109C โ€“ 2: Física para Ciencias
1 er semestre 2014
Resumen โ€“ Lanzamiento de Proyectil
Se definieron los vectores posición ๐‘Ÿ, desplazamiento โˆ†๐‘Ÿ, velocidad ๐‘ฃ y
aceleración ๐‘Ž en 2 dimensiones.
El movimiento en 2 dimensiones se puede descomponer como si fuese un
vector. La posición está definida como:
1
๐‘Ÿ๐‘“ = ๐‘ฅ๐‘– + ๐‘ฃ๐‘ฅ,๐‘– × ๐‘ก + ๐‘Ž๐‘ฅ × ๐‘ก 2
2
1
๐‘– + ๐‘ฆ๐‘– + ๐‘ฃ๐‘ฆ,๐‘– × ๐‘ก + ๐‘Ž๐‘ฆ × ๐‘ก 2 ๐‘—
2
En el movimiento de proyectiles:
๐’—๐’™ es constante (๐‘Ž๐‘ฅ = 0).
FIS109C โ€“ 2: Física para Ciencias
๐‘ฃ๐‘ฆ,๐‘“ = ๐‘ฃ๐‘ฆ,๐‘– โˆ’ ๐‘” โˆ†๐‘ก
1 er semestre 2014
Proyectiles: Ejemplo 3
100 m/s
37°
Se dispara un proyectil desde la orilla de un acantilado de
140 m de altura con una velocidad de 100 m/s a un ángulo
de 37° con la horizontal.
140 m
a) Calcule el alcance โˆ†x, del proyectil.
R = 1,14 km
b) Calcule el tiempo que tarda el proyectil en llegar al nivel del acantilado
R = 12,3 s
c) Calcule la rapidez y la dirección de la velocidad final. R: 113 m/s, -45° al horizontal
FIS109C โ€“ 2: Física para Ciencias
1 er semestre 2014
Proyectiles: Ejercicio 4
¿Qué ángulo de lanzamiento maximiza el alcance de un proyectil? (se
supone โˆ†y =0)
๏ฑ ๏€ฝ 45
o
FIS109C โ€“ 2: Física para Ciencias
1 er semestre 2014
Movimiento circular uniforme
Propiedades:
๏‚ง
Este objeto tiene una trayectoria circular.
๏‚ง
El objeto demora el mismo tiempo en hacer cada
revolución (gira con la misma velocidad angular ๐œ”).
Se define el período (๐‘‡), que es el tiempo de una revolución completa.
๏‚ง La magnitud de la velocidad (rapidez ๐‘ฃ) permanece constante.
๏‚ง La velocidad siempre tiene una dirección tangente al círculo (velocidad tangencial ๐‘ฃ๐‘ก ).
La rapidez de un objeto rotando en
un círculo de radio ๐‘Ÿ con período ๐‘‡:
La velocidad angular ๐œ”:
FIS109C โ€“ 2: Física para Ciencias
2๐œ‹๐‘Ÿ
๐‘ฃ๐‘ก =
๐‘‡
2๐œ‹
๐œ”=
๐‘‡
1 er semestre 2014
Movimiento circular uniforme
La rapidez de un objeto rotando en
un círculo de radio ๐‘Ÿ con período ๐‘‡:
2๐œ‹๐‘Ÿ
๐‘ฃ๐‘ก =
๐‘‡
Unidades
La frecuencia de oscilación ๐‘“:
1
๐‘“=
๐‘‡
La velocidad angular ๐œ”:
2๐œ‹
๐œ”=
๐‘‡
๐‘Ÿ๐‘’๐‘ฃ๐‘œ๐‘™๐‘ข๐‘๐‘–๐‘œ๐‘›๐‘’๐‘ 
๐‘ก๐‘–๐‘’๐‘š๐‘๐‘œ
๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘Ž๐‘›๐‘’๐‘ 
๐‘ก๐‘–๐‘’๐‘š๐‘๐‘œ
1
๐‘ 
๐‘Ÿ๐‘Ž๐‘‘
๐‘ 
360 ๐‘”๐‘Ÿ๐‘Ž๐‘‘๐‘œ๐‘  = 2๐œ‹ ๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘Ž๐‘›๐‘’๐‘ 
FIS109C โ€“ 2: Física para Ciencias
1 er semestre 2014
Movimiento circular uniforme
Propiedades:
¿El objeto está acelerado o no?
La magnitud de la velocidad (rapidez) es constante.
La dirección de la velocidad cambia.
La velocidad es un vector:
Si la dirección de un vector cambia, el vector cambia.
โˆ†๐‘ฃ
๐‘Ž=
โ‰  0 Entonces, si hay aceleración (centripeta).
โˆ†๐‘ก
FIS109C โ€“ 2: Física para Ciencias
1 er semestre 2014
Aceleración Centrípeta
Por triángulos equivalentes
โˆ†๐‘Ÿ โˆ†๐‘ฃ
=
๐‘Ÿ
๐‘ฃ
โˆ†๐‘ฃ
๐‘Ž=
โˆ†๐‘ก
๐‘ฃ โˆ†๐‘Ÿ
๐‘Ž=
๐‘Ÿ โˆ†๐‘ก
โˆ†๐‘Ÿ
lim
=๐‘ฃ
โˆ†๐‘กโ†’0 โˆ†๐‘ก
โˆ†๐œƒ โ†’ 0
โˆ†๐‘ฃ es perpendicular a ๐‘ฃ1
Entonces la aceleración centrípeta está dirigida hacia el
centro del círculo.
FIS109C โ€“ 2: Física para Ciencias
๐‘ฃ2
๐‘Ž=โˆ’ ๐‘Ÿ
๐‘Ÿ
๐‘ฃ2
๐‘Ž๐‘ =
๐‘Ÿ
1 er semestre 2014
Ejemplo: Aceleración Centrípeta
Una pelota en el extremo de un cordel gira uniformemente en un círculo con un radio
de 0,60 m. La pelota efectúa 2,0 revoluciones por segundo. ¿Cuál es su aceleración
centrípeta?
FIS109C โ€“ 2: Física para Ciencias
1er semestre 2014
Aceleración Tangencial y Radial
Una partícula moviéndose a lo largo de una trayectoria curva como
aparece en la figura tiene una aceleración que cambia con el tiempo.
๐’‚๐’•
radial
๐‘Ž = ๐‘Ž ๐‘Ÿ + ๐‘Ž๐‘ก
๐’‚๐’“
๐’‚
๐’‚๐’•
tangencial
๐’‚๐’•
๐’‚๐’“
๐’‚๐’“ ๐’‚
provoca un cambio en la rapidez de la partícula: ๐‘Ž =
๐‘ก
โˆ†๐‘ฃ
โˆ†๐‘ก
provoca un cambio en la dirección del vector velocidad:
El módulo de la aceleración ๐‘Ž será:
FIS109C โ€“ 2: Física para Ciencias
๐‘Ž=
๐‘ฃ2
๐‘Ž๐‘Ÿ =
๐‘Ÿ
๐‘Ž๐‘Ÿ2 + ๐‘Ž๐‘ก2
1er semestre 2014
Aceleración Tangencial y Radial
En el movimiento circular uniforme es un caso especial de un
movimiento a lo largo de una trayectoria curva:
๏‚ง ๐‘ฃ es constante (๐‘Ž๐‘ก es nula),
๏‚ง ๐‘Ž es siempre radial.
En un movimiento en una dimensión:
๏‚ง La dirección de ๐‘ฃ es constante (๐‘Ž๐‘Ÿ es nula).
๏‚ง ๐‘Ž๐‘ก puede no ser nula.
FIS109C โ€“ 2: Física para Ciencias
1 er semestre 2014
Ejemplo
Un pelota colgada de una cuerda de 0.5 m de longitud se balancea
en forma circular bajo la influencia de la gravedad. Cuando la cuerda
forma un ángulo de 20° con la vertical, la pelota tiene una rapidez de
1,5 m/s. Encontrar:
a) La magnitud de la aceleración radial en ese instante.
b) La magnitud de la aceleración tangencial en ese instante.
c) La magnitud y dirección de la aceleración total en ese instante.
FIS109C โ€“ 2: Física para Ciencias
1 er semestre 2014
Velocidad y Aceleración Relativas
Si dos observadores se mueven uno con respecto al otro podrán medir
desplazamientos, velocidades y aceleraciones diferentes de un objeto dado.
Realizar los gráficos de movimiento de la pelota de la figua con respecto al
marco de referencia Oโ€™ y O.
Ambos gráficos están correctos.
FIS109C โ€“ 2: Física para Ciencias
1er semestre 2014
Velocidad y Aceleración Relativas
Dos marcos de referencias que
tienen el mismo origen en ๐‘ก = 0,
pero uno se mueve con respecto
al otro con una velocidad ๐‘ฃ0 .
Los vectores ๐’“ y ๐‘Ÿโ€ฒ se relacionan
entre si por:
๐’“โ€ฒ = ๐’“ โˆ’ ๐’—๐ŸŽ × ๐’•
Los vectores velocidad serán:
๐’—โ€ฒ = ๐’— โˆ’ ๐’—๐ŸŽ
Pero la aceleración medida en
ambos marcos será:
๐’‚โ€ฒ = ๐’‚
FIS109C โ€“ 2: Física para Ciencias
๐‘†โ€ฒ
๐‘†
๐‘Ÿ
๐’—๐ŸŽ × ๐’•
๐‘Ÿโ€ฒ
๐’—๐ŸŽ
Ecuaciones de transformación
galileanas.
1 er semestre 2014
Ejemplo
Un barco cruza un río de 1 km de ancho con un caudal que se mueve a una
velocidad de 3 km/h hacia el norte. Si el barco viaja hacia el este a su máxima
velocidad de 4 km/h:
a) ¿Cuál es el desplazamiento hacia el norte con respecto al punto inicial que
hace el barco?
b) Si el barco cruzase el rio sin cambiar su desplazamiento hacia el norte
¿cuánto se demoraría?
โˆ†๐’š
FIS109C โ€“ 2: Física para Ciencias
1 er semestre 2014
Resumen
๏‚ง Propiedades de un movimiento circular uniforme.
2๐œ‹๐‘Ÿ
๐‘ฃ๐‘ก =
๐‘‡
2๐œ‹
๐œ”=
๐‘‡
๏‚ง Aceleración centrípeta en un movimiento circular uniforme.
๐‘ฃ2
๐‘Ž๐‘ =
๐‘Ÿ
๏‚ง Aceleraciones tangenciales y radiales en una trayectoria curva.
โˆ†๐‘ฃ
๐‘Ž๐‘ก =
โˆ†๐‘ก
๐‘ฃ2
๐‘Ž๐‘Ÿ =
๐‘Ÿ
๐‘Ž=
๐‘Ž๐‘Ÿ2 + ๐‘Ž๐‘ก2
๏‚ง El movimiento circular uniforme es un caso especial de un movimiento
en una trayectoria curva.
๏‚ง Velocidad y aceleración relativas y transformaciones galileanas.
FIS109C โ€“ 2: Física para Ciencias
1 er semestre 2014