Transcript Document

Future Directions in Parity Violation:
From Quarks to the Cosmos
M.J. Ramsey-Musolf
+ many students, postdocs, collaborators, and
colleagues
PAVI ‘06
MHLOS
Fundamental Symmetries & Cosmic History
What are the fundamental symmetries
that have governed the
microphysics of
the evolving
universe?
• Parity violation as a probe of the proton’s
internal structure (sea quarks, twist)
• Parity violation as probe of the hadronic
weak interaction
• Parity violation as a probe of additional
symmetries of the early universe
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Beyond the SM
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
Electroweak symmetry
SMHiggs
“unfinished
business”:
breaking:
?
What is the internal landscape
of the proton?
Sea quarks, gluons, & qq, qqg
correllations
Beyond the SM
SM symmetry (broken)
Probing the strange sea with PV
GMs = 0.28 +/- 0.20
Not surprising:
ms / Lc ~ 0.15
Challenge for
lattice:
Unquenched, light
chiral quarks
Preliminary
World Data
4/24/06
GEs = -0.006 +/- 0.016
~3% +/- 2.3% of proton
magnetic moment
~20% +/- 15% of
isoscalar magnetic moment
~0.2 +/- 0.5% of Electric
distribution
Consistent with s-quark
contributions to mP & JP
but smaller than early
theoretical expectations
Courtesy of Kent
Pashke (U Mass)
Probing Higher Twist: Beyond
the Parton Model
2xF1 Experimental Status
Alekhin NNLO
MRST NNLO
MRST NNLO with
Barbieri Target
Mass Corrections
• Smooth transition from DIS
(solid squares) to resonance
region
• Resonances oscillate about
perturbative curves (quarkhadron duality in transverse
channel) - all Q2
•Target mass corrections large
and important
~ 50% fluctuations
about leading twist
Data from JLab E94-110 (nucl-ex/0410027, submitted to PRL) Courtesy C Keppel
n = 2 Cornwall-Norton Moments
F2
2xF1
FL
F2, F1 in excellent
agreement with NNLO +
TM above Q2 = 2 GeV2
No (or canceling) higher
twists
Yet, dominated by large x
and resonance region
Remove known HT (a bit
novel), the elastic, and
there is no more down to
Q2 = 0.5 GeV2
The
case are
looksthe
different
for
Where
qq and
Fqqg
or curve?) ?
L (data
correlations

Probing Higher Twist with PV
Looking
PV
Deepbeyond
Ineslastic
theeD
parton
(J Lab
description
12 GeV)
APV Q 2
Theoretical Challenges
~0.4%
Different
pQCD evolution of twist
PDF fits
four moments
Lattice QCD for t =4
matrix elements
y
Organizing the program:
what kinematics,
complementarity
E=11 GeV
0
with
PC F1,2 , …
q=12.5
Sacco, R-M
preliminary
Fundamental Symmetries & Cosmic History
Electroweak
symmetry business”:
SM “unfinished
breaking: Higgs ?
How do weak interactions of
hadrons reflect the weak qq force ?
Are QCD symmetries (chiral, large NC,…)
applicable? Is there a long range weak NN
interaction?
Beyond the SM
SM symmetry (broken)
Weak Interactions of Hadrons: Strange?
Hyperon weak decays
S  n 
S  p 0
S  n 
L  p 
L  n 0
  L 0 0  L 0
M B B   UB A  B 5 UB
S-Wave:
Parity-violating
B
Ll.o.WEAK  dTrBh,B  f TrBh,B 
P-Wave:
Parity
conserving

B
c symmetry
not sufficient
B
B
B


B
B
B
Weak Interactions of Hadrons: Strange?
S  p , L n ,
E1 (PV)
i
MB B   
U   A  B  5 U F 
MB  MB 
Breaking of
SU(3) sym
M1 (PC)
Are weak interactions of
2Re A B* ?
s-quarks a “un-natural”
 Bare
 deeper
B  their
2
2
Or
A HWI
B
puzzles with the
involving all light flavors ?

 BB  ~ ms L c ~ 0.15
S

p
~  0.76  0.08
 S ~  0.63  0.09
0 0
Th’y
Exp’t

Weak Interactions of S=0 Hadrons:
Strange?
Zhu, Puglia, Holstein, R-M
W  ,Z 0
q
S=0 analog of BB’ :
PV E1 N- transition
q


N


 A ~ 5 108

“natural” d
PV Asymmetry
Q2=0: Nonzero
PVES: G0,
QWEAK
What does
QCD predict ?

d mN
A  2 V

C3 L c
A ~ 1106
enhanced d
Weak Interactions of S=0 Hadrons:
Strange?
W  ,Z 0
q
Nuclear effects:
W,Z ~ 0.002 fm << Rcore
q

Meson-exchange model
 
 , , 
N

N
Use parity-violation to filter
out EM & strong interactions

Seven PV mesonnucleon couplings
h1 , h0,1,2 , h0,1, h1 
Desplanques, Donoghue,
& Holstein (DDH)
Is the weak NN force short range ?
h ~ 10 g
, 
Cs , Anapole
moment
133

Boulder, atomic PV
N
N


h ~0

0

18
Long range: 
-exchange?

Ne

,0
0  ,1

T=1 force

0  ,1
1 ,0


18
F

Analog
 2-body
matrix elements
Model
independent
Is the weak NN force short range ?
  , , 
N

N
• Problem with expt’s

• Problem with nuc th’y

• Problem with model
T=1 force
• No problem (1)
EFT
Hadronic PV: Effective Field Theory

PV Potential




Long Range


Medium Range
Short Range


h1NN
1,2,3
s , t ,  t
h1NN
O(p)
O(p)
O(p-1)
O(p)
Zhu, Maekawa,
Holstein, R-M, van Kolck ‘05




Six constants to O(p)

R-M & Page ‘06
One new O(p) constant
PV Current Operators







O(p-1)


Long Range
h1NN






 


 
Hadronic PV: Effective Field Theory

Medium Range
Short Range
C
h1NN
1,2,3
s , t ,  t
O(p)
O(p)
O(p)


Hadronic PV: Few-Body Systems
Pionless theory
mN  pp  1.22 AL (pp)
Ab initio few-body calcs
Done
LANSCE, SNS
mN t   9.35 AL (np  d )
HARD*
mN  pn  1.6 AL (pp)  3.7 AL (p )  37 A (np  d )  2 P (np  d )
mN t  0.4 AL (pp)  0.7 AL (p )  7 A (np  d )  P (np  d )
d n
mN nn  1.6 AL (pp)  0.7 AL (p )  33.3 A (np  d ) 1.08 P (np  d ) 0.83
dz
AL d  np P nd  t 
0
1
2
6
  pp  s  s  s
NIST,SNS
A nd  t  AL  pd 
nn  0s  1s  2s
6
d np
New 2few-body
Pionless th’y: 5 exp’ts
0

 s calcs
2 sneeded
6
dzpn 
Dynamical pions: 7 exp’ts
Hadronic PV: Theoretical Challenges
Complete determination of PV NN &
NN interactions through O (p)
Attempt to understand
the i, h etc. from
QCD
Attempt to understand
nuclear PV observables
systematically
Are the PV LEC’s
“natural” from
QCD standpoint?
Does EFT power
counting work in nuclei ?
Implications for 0-decay
Hadronic PV & 0 - decay
e
e

e

AZ,N 
u



AZ  2,N  2
How do we compute & separate
 exchange effects?
heavy particle
e
M
W
W

d


u
d



e
e
Light M : 0-decay
 rate may
0 scale of
 yield
c
m e˜ 
u
e˜ 
u


EFF
2
m
  U ek mk e 2i
d k
d

Hadronic PV & 0 - decay
How do we compute & separate
heavy particle exchange effects?
e e
 
u
d 
AZ,N
e
e e
u

u
 


AZ  2,Nd 2

e

u

W



4 quark operator,
as in hadronic PV

M
W
d

e
e˜ 

d

e
 c 0
e˜ 

d
u
d
u

Hadronic PV as a probe
• Determine VPV through O (p)
from PV low-energy few-body
studies where power counting
works

O ( p -1 )
e
• Re-analyze nuclear PV
observables using this VPV
O ( p)
e
e
e
e
e we would have some
•If successful,
indication
that operator


 power


 

counting works in nuclei




N
N
•
Apply
to
0-decay


N
K  p2


N
K NN p1

N

N
K NNNN p 0

Prezeau, R-M,
& Vogel
Fundamental Symmetries & Cosmic History
Electroweak
symmetry
Puzzles the Standard
Model
can’t solve
breaking: Higgs ?
1.
2.
3.
4.
Origin of matter
Unification & gravity
Weak scale stability
Neutrinos
Beyond the SM
What are the symmetries
(forces) of the early
universe beyond those of
the SM?
SM symmetry (broken)
PV as a Probe of New Symmetries
Electroweak
symmetry
Puzzles the Standard
Model
can’t solve
breaking: Higgs ?
1.
2.
3.
4.
Origin of matter
Unification & gravity
Weak scale stability
Neutrinos
Beyond the SM
What are the implications
of m and PV expts for
possible new symmetries
& forces?
SM symmetry (broken)
PV as a Probe of New Symmetries
Electroweak
symmetry?
Unseen Forces:
Supersymmetry
breaking: Higgs ?
1.
2.
3.
4.
Unification & gravity
Weak scale stability

Origin of matter
Neutrinos

˜

e
W
˜0
c

 

˜


e


Beyond the SM

SM symmetry (broken)
PV Correlations in Muon Decay & m
3/4
0
3/4
1
TWIST (TRIUMF)
PV Correlations in Muon Decay & m
Model Independent
Analysis
0
0
H
H


H
0






e

MPs
constrained by m


1,2
m ,  and decay corr
P
e
TWIST P
W



Also -decay,
Higgs production
e
e
m
Erwin, Kile, Peng, R-M 06
Constraints on non-SM




Higgs production at ILC:
Model Dependent Analysis


H0
Z,W
Prezeau,Kurylov 05


2005 Global fit: Gagliardi et al.

TWIST 

First row CKM
P



MWR (GeV)

Weak decays & new physics
R Parity Violation
R-M,
V Flavor-blind
dSu
VKurylov,
VSUSY-
d  u e e

ud
us
breaking

u c t Vcd

V
MW  td
s  u e e

b  u e e

e
e
O
c


~ 0.001



SM
12k
 12k ˜

n  p e e e  O
 
-decay
e˜
˜

˜
0
e
SUSY
k 
W
R







d


ee
 
˜e

   
e  e

˜
c
e




0



j
L
˜


1j1



A(Z,N)q˜ A(Z 1,N 1) e  e
˜0
c

1j1
e d
CKM unitarity ?

ub
 
Vcs Vcb s 
CKM Unitarity
 
Vts Vtb b 
CKM, (g-2),
MW, Mt ,…

F

F
APV
l2
G
 Vud 1 r  r 
G
M˜ L  Mq˜ L
Kurylov,
No
long-lived LSPNew
or SUSY
physics
DMR-M
SUSY
RPV

Weak decays & PV

F

F
G
 Vud 1 r  r 
G
Ultra cold neutrons
58Ni
coated stainless guide
-decay
n  p e e
A(Z,N)  A(Z 1,N 1) e   e
    0 e  e
Lifetime & correlations
Flapper valve
Liquid N2
pe  p
pe
dW 1 a
 An  
E e E
Ee
Be reflector
LHe
Solid D2
77 K poly

UCN Detector
Tungsten Target
LANSCE: UCN “A”
NIST, ILL:
tn
Future SNS: tn,
a,b,A,… Future LANSCE:
Correlations
Weak decays & PV
d  u e e

u
s  u e e
b  u e e

˜


W

˜0
c


e
 


u˜



d
Vus Vub d 
 
Vcs Vcb s 
 
Vts Vtb b 
pe  p
ppe
dW 1 a Bme Ee An n  
E e E
EE e

˜0
c
u


˜

O
 ~ 0.001
 SM
O
e
SUSY
c
Vud

t Vcd

Vtd
e
 
 
˜e

˜
c



e
SUSY

Non (V-A) x (V-A)
interactions: me/E
-decay at “RIAcino”?
Weak decays & PV: Correlations
Fierz int
(current)
-decay
correlations
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
-decay hparameter
Profumo, R-M, Tulin
PV w/
radioactive
isotopes ?
GF from
t
Probing SUSY with PV eN Interactions
e
Z

SUSY
dark matter

e


0
˜
c

Z0


 f
c 

SUSY
loops


˜

 
e˜ 
e
f
e



 e˜




f

f


c0 ->
QuickTime™ and a TIFF (Uncompressed)
e+e decompressor are needed to see this picture.
 is Majorana
e
e

˜ Rk
e
RPV 95% CL fit to
12k decays, M ,etc.
12k
weak
W


Kurylov, Su, MR-M

Probing SUSY with PV eN Interactions
Deep Inelastic eD vs elastic ef
e
RPV
Loops
p
SUSY effects
Probing SUSY with PV eN Interactions
Kurylov, R-M, Su
“DIS Parity”
SUSY loops
 SUSY
dark matter
QWp,SUSYQuickTime™
QWp,SM and a TIFF (Uncompressed) decompressor are needed to see this picture.
Linear
collider
E158 &QWeak
JLab Moller
RPV 95% CL
QWe, SUSY QWe, SM
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Baryogenesis: When?
SUSY? Neutrinos? CPV?
WIMPy D.M.: Related
to baryogenesis?
“New gravity”? Lorentz
violation? Effects on CMB?
?
Beyond the SM
SM symmetry (broken)
Cosmic Energy Budget
What is the origin of baryonic matter ?
Cosmic Energy Budget
E
d  dS
Dark Matter


Baryons
 EDM
B (7.3 2.5) 1011
YB  
s (9.2 1.1) 1011
BBN
WMAP
Dark Energy

dS E

h
T-odd , CP-odd
by CPT theorem
What are the
Searches
for permanent
quantitativeelectric
implications
dipoleof new
moments
EDM
experiments
(EDMs) of
forthe
explaining
neutron,the
electron,
origin of
andbaryonic
the
neutral atoms
component
probe of
new
theCP-violation
Universe ?
Baryogenesis: New Electroweak Physics
90’s:
Weak Scale Baryogenesis
• B violation
Cohen, Kaplan, Nelson
Joyce, Prokopec, Turok
Unbroken phase
Topological transitions
new
• C & CP violation
• Nonequilibrium
dynamics
(x)
Broken phase

1st order phase transition

CP Violation
Sakharov, 1967
new
• Is it viable?
• Can experiment constrain it?
• How reliably can we compute it?

new


new
e



EDM Probes of New CP Violation
CKM
f
dSM
dexp
dfuture
e
 1040
 1.6 1027
 1031
n
 1030
 6.3 1026
 1029
Hg
 1033
 2.11028
 1032

 1028
 1.11018
 1024
199
Also 225Ra, 129Xe, d
If new EWK CP violation is responsible for abundance
of matter, will these experiments see an EDM?
Baryogenesis & Dark Matter: MSSM
Chargino Mass Matrix
T << TEW
CPV
new
0
0
0
0
M
c
C =11B 12W 13Hd 14Hu
mW 2 sin 
WINO


M1
0

HIGGSINO
Neutralino Mass Matrix
MN =
background field
m W 2 cos 
M2
BINO
T ~TEWT:~scattering
TEW
~ ~
(xH,W
)
of
from
T << TEW : mixing
~ ~
~0
of H,W to c~,c
q , W˜ , B˜ , H˜ u,d
0
-mZ cos sin qW
mZ cos cos qW
M2
mZ sin sin qW
-mZ sin sin qW
-mZ cos sin qW
mZ cos cos qW
0
-
mZ sin sin qW
-mZ sin sin qW
-
0

EDM constraints & SUSY CPV
Neutralino-driven
baryogenesis
Baryogenesis
LEP II Exclusion
Two loop de
Cirigliano,
Profumo, R-M
SUGRA: M2 ~ 2M1
AMSB: M1 ~ 3M2
Dark Matter: Future Experiments
Cirigliano,
Profumo, R-M
EDMs, Baryogenesis, & Dark Matter
• Continued progress in performing systematic
computations of the baryon asymmetry
• Continued scrutiny of QCD & nuclear structure
uncertainties in EDM computations
• Comprehensive phenomenology with other
models of new CPV (extended Higgs
sector)
• Funding for experiments !
Future Directions:
• Parity violation in electron scattering and hadronic
interactions will continue to provide new insights
into proton’s internal structure and weak qq
interactions
• PV in weak decays and electron scattering will continue to
provide insights into new physics (SUSY, ’s, Higgs)
that will complement LHC, ILC probes
• PVTV will provide powerful probe of the origin of baryonic
matter and non-baryonic dark matter
Considerable theoretical and experimental challenges
and opportunities remain: PAVI must go on!