Transcript Document
Low Energy Precision Tests of Supersymmetry M.J. Ramsey-Musolf Caltech Wisconsin-Madison M.R-M & S. Su, hep-ph/0612057 J. Erler & M.R-M, PPNP 54, 351 (2005) QuickTime™ and a TIFF (U ncompressed) decompressor are needed to see this picture. Outline I. Motivation: Why New Symmetries ? Why Low Energy Probes ? II. Prime Suspect: Supersymmetry III. Low Energy Precision Tests • Weak Decays • PVES I. Motivation Why New Symmetries ? Why Low Energy Probes ? Fundamental Symmetries & Cosmic History Electroweak symmetry Puzzles thebreaking: Standard Model can’t solve Higgs ? 1. 2. 3. 4. Origin of matter Unification & gravity Weak scale stability Neutrinos Beyond the SM What are the symmetries (forces) of the early universe beyond those of the SM? SM symmetry (broken) Fundamental Symmetries & Cosmic History Electroweak symmetry breaking: Higgs ? Baryogenesis: When? CPV? SUSY? Neutrinos? WIMPy D.M.: Related to baryogenesis? “New gravity”? Lorentz violation? Grav baryogen ? ? Weak scale baryogenesis can Beyond the SMbe tested experimentally SM“Known symmetry (broken) Unknowns” Cosmic Energy Budget Fundamental Symmetries & Cosmic History Early universe Present universe Standard Model 4 for A “near miss” 2 grand unification g Gravity i Is there unification? What new forces are responsible ? Weak scale High energy desert log 10 ( / 0 ) Planck scale Fundamental Symmetries & Cosmic History Early universe 2 GF ~ 1 Muniverse Present W EAK Weak Int Rates: Solar burning Element abundances Standard Model 4 Weak scale 2 gi unstable: Why is GF so large? Weak scale Unification Neutrino mass Origin of matter High energy desert log 10 ( / 0 ) Planck scale There must have been additional symmetries in the earlier Universe to • Unify all matter, space, & time • Stabilize the weak scale • Produce all the matter that exists • Account for neutrino properties • Give self-consistent quantum gravity Supersymmetry, GUT’s, extra dimensions… What are the new fundamental symmetries? Two frontiers in the search Collider experiments (pp, e+e-, etc) at higher energies (E >> MZ) Large Hadron Collider Ultra cold neutrons CERN High energy physics Indirect searches at lower energies (E < MZ) but high precision LANSCE, NIST, SNS, ILL Particle, nuclear & atomic physics Precision Probes of New Symmetries Electroweak symmetry New Symmetries breaking: Higgs ? 1. 2. 3. 4. Origin of Matter Unification & gravity Weak scale stability Neutrinos ˜ e W ˜0 ˜ e QuickTime™ and a TIFF (Uncompress ed) dec ompres sor are needed to s ee this pic ture. QuickTi me™ and a T IFF (Uncom pressed) decom pressor are needed to see this picture. QuickT ime ™an d a TIFF ( Uncomp res sed) deco mpre ssor ar e need ed to see this pictur e. QuickTime™ and a TIFF (Uncompr essed) decompressor are needed to see this picture. Beyond the SM QuickTime™ and a TIFF (Uncompress ed) dec ompres sor are needed to s ee this pic ture. SM symmetry (broken) Precision Probes of New Symmetries Direct Measurements Radiative corrections Probing Fundamental • Precision measurements Symmetries beyond predicted a range for mt the SM: before top quark discovery low• mUse mb ! t >> precision energy measurements • mt is consistent with that to probe virtual effects range of new symmetries & • Itcompare didn’t have tocollider be that with way results Stunning SM Success J. Ellison, UCI Precision, low energy measurements can probe for new symmetries in the desert Precision ~ Mass Scale NEW O M SM O M˜ NEW 2 M=m ~ 2 x 10-9 M=MW exp ~ 1 x 10-9 ~ 10-3 Interpretability • Precise, reliable SM predictions • Comparison of a variety of observables • Special cases: SM-forbidden or suppressed processes II. Prime suspect: Supersymmetry SUSY: a candidate symmetry of the early Universe • Unify all forces 3 of 4 • Protect GF from shrinking Yes • Produce all the matter that exists Maybe so • Account for neutrino properties Maybe • Give self-consistent quantum gravity Probably necessary Couplings unify with SUSY Early universe Present universe Standard Model 4 2 gi Supersymmetry High energy desert Weak scale log 10 ( / 0 ) Planck scale SUSY protects GF from shrinking NEW H0 ˜ NEW H0 H0 H0 M 2 WEAK ~ M M log terms 2 2 ˜ =0 if SUSY is exact SUSY may help explain observed abundance of matter Cold Dark Matter Candidate 0 Lightest SUSY particle Baryonic matter: electroweak phase transition Unbroken phase Broken phase CP Violation t˜ H SUSY: a candidate symmetry of the early Universe Supersymmetry Fermions Bosons e L,R , q L,R e˜ L,R , q˜ L,R ˜ , Z˜ , ˜, g ˜ W ˜ ,H ˜ Higgsinos H u d W,Z , , g gauginos sfermions Hu,Hd 0 ˜ , Z˜ , ˜ ˜, H ˜ ˜ W , u, d Charginos, neutralinos SUSY must be a broken symmetry 105 new parameters: masses, mixing angles, CPV phases (40) Superpartners have not been seen Theoretical models of SUSY breaking Models: relate weak scale parameters to each other at high SUSY Breaking scales (“hidden sector”) M e˜ me M q˜ mq M ˜ MW ,Z , How is SUSY broken? Visible World Hidden World Flavor-blind mediation SUSY and R Parity If nature conserves PR PR 1 3(B L) 1 2S vertices have even number of superpartners Consequences 0 ˜ Lightest SUSY particle is stable viable dark matter candidate Proton is stable Superpartners appear only in loops R-Parity Violation (RPV) L=1 WRPV = ijk LiLjEk + ijk LiQjDk +/i LiHu + ijkUiDjDk B=1 proton decay: Set ijk =0 Li, Qi SU(2)L doublets Ei, Ui, Di SU(2)L singlets RPV : Four-fermion Operators e e d e k e˜ R j q˜ L 12k 1j1 12k e 1j1 d L=1 L=1 12k 12k 2 2 ˜eRk 4 2GF M / 1j 1 / 2 iji 2 4 2GF Mq˜ j L III. SUSY & Weak Decays Weak Decays & SUSY d u e e u s u e e b u e e b-decay W ˜ ˜ 0 n p e e ˜ GFb Vud 1 rb r GF SUSY New physics e 0 ˜e e e ˜ O ~ 0.001 SM O e Vus Vub d Vcs Vcb s Vts Vtb b SUSY A(Z,N) A(Z 1,N 1) e e ˜0 ˜ e c Vud t Vcd Vtd e r SUSY Radiative Corrections W Propagator Vertex & External leg ˜ W ˜0 W e ˜ e e e W ˜ e W ˜ 0 ˜ ˜ e e e˜ W ˜ 0 ˜ ˜ ˜ e ˜0 Box ˜ e e e e Weak Decays & SUSY R Parity Violation R-M, V Flavor-blind dSu VKurylov, VSUSY- d u e e ud us breaking u c t Vcd V MW td s u e e b u e e e e O ~ 0.001 SM 12k 12k ˜ n p e e e O b-decay e˜ ˜ ˜ 0 e SUSY k W R d A(Z,N)q˜ A(Z 1,N 1) e e ˜0 ee ˜e e e ˜ e 0 j L ˜ 1j1 1j1 e d ub Vcs Vcb s CKM Unitarity Vts Vtb b CKM, (g-2), MW, Mt ,… b F F APV l2 G Vud 1 rb r G M˜ L Mq˜ L Kurylov, No long-lived LSPNew or SUSY physics DMR-M SUSY RPV Weak decays d u e e u s u e e b u e e kaon decay 0 K e e Value of Vus important c Vud t Vcd Vtd Vus Vub d Vcs Vcb s Vts Vtb b GFK Vus 1 rK r GF New physics: too small Situation Unsettled UCNA CKM Summary: PDG04 CKM Summary: New Vus & tn ? New tn !! Vus & Vud theory ? UCNA New 0+ info Weak decays & new physics d u e e u s u e e b u e e ˜ W ˜0 e u˜ d Vus Vub d Vcs Vcb s Vts Vtb b pe p pe dW 1 a An E e E Ee ˜0 u ˜ O ~ 0.001 SM O e SUSY c Vud t Vcd Vtd Correlations e ˜e ˜ e SUSY Non (V-A) x (V-A) interactions: me/E b-decay at SNS, RIACINO? Weak decays & SUSY : Correlations Chiral symmetry breaking in SUSY ˜0 u Is SB / mf as in SM ? u˜ ˜e J d e ˜ e Future exp’t ? J p Profumo, R-M, Tulin Large symmetry breaking: New SUSY models Mass suppressed symmetry breaking: “alignment” models Collider signature: SUSY but only SMlike Higgs Pion leptonic decay & SUSY SM strong interaction effects: parameterized by F Hard to compute SM radiative corrections also have QCD effects ˜0 u To probe effects of new physics in NEW we need to contend with QCD ˜ u˜ d ˜ Pion leptonic decay & SUSY New TRIUMF, PSI Leading QCD uncertainty: Marciano & Sirlin ˜0 u e ˜e u˜ d ˜ e ? Can we do better on Tulin, Su, R-M ˜ d ˜ Prelim u˜ vs ˜0 u Probing Slepton Universality Min (GeV) Lepton Flavor & Number Violation e Present universe Early universe Y1 MEG: B!e ~ 5 x e AZ,N R= 10-14 MECO: B!e~ 5 x Also PRIME AZ,N B!e 1 L B!e 1 S ? ? log 10 ( / 0 ) 10-17 Weak scale Planck scale Lepton Flavor & Number Violation 0bbdecay e W u d MEG: LightBM ~ 5 x 10-14? !eexchange u e e M u W d Raidal, Santamaria; Cirigliano, Kurylov, RM, Vogel LFV Probes of RPV: !e e AZ,N e˜ e˜ e u AZ,N d Heavy particle exchange ? -17 MECO: B ~ 5 x 10 !e ˜ 0 d e e k11/ ~ 0.008 0.09 for formm TeV SUSY SUSY~~11TeV e e e e * Logarithmic enhancements of R Low scale LFV: R ~ O(1) * e GUT scale LFV: R ~ O Lepton Flavor & Number Violation e e e e e e N N N N Short distance contributions Long range nuclear effects (’s) N N Faessler et al Prezeau, R-M, Vogel Lepton Flavor & Number Violation 111/ ~ 0.06 for mSUSY ~ 1 TeV 1000 0bbsignal equivalent to Degenerate 100 Effective bb Mass (meV) degenerate hierarchy Inverted 10 Normal Loop contribution to m of inverted hierarchy scale m Ue1 = 0.866 1 Ue2 = 0.5 m 2 2 atm s ol = 70 meV = 2000 meV 2 2 Ue3 = 0 0.1 2 1 3 4 5 6 7 2 3 4 5 6 7 10 100 Minimum Neutrino Mass (meV) 2 3 4 5 6 7 1000 IV. SUSY & PVES QW and SUSY Radiative Corrections Tree Level Q g g f W f V e A Flavor-dependent Radiative Corrections Q PV (2I 4Qf PV sin2 W ) f f W f 3 Normalization Constrained by Z-pole precision observables Scale-dependent effective weak mixing Flavor-independent SUSY Radiative Corrections e Z Propagator e Vertex & External leg 0 e ˜ e˜ ˜ Z e e˜ e ˜ e Z ˜ 0 f f f˜ f f f ˜e ˜e f e˜ ˜ 0 e f ˜ e e f 0 Z ˜0 Box e˜ e f f Probing SUSY with PV eN Interactions e Z SUSY dark matter e 0 ˜ Z0 f SUSY loops ˜ e˜ e f e e˜ f f 0 -> QuickTime™ and a TIFF (Uncompressed) e+e decompressor are needed to see this picture. is Majorana e e ˜ Rk e RPV 95% CL fit to 12k decays, M ,etc. 12k weak W Kurylov, Su, MR-M Probing SUSY with PV eN Interactions QWP, SUSY / QWP, SM Lattice for fK+ Large NC for fK+ QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. QWe, SUSY / QWe, SM Probing SUSY with PV eN Interactions 12k ~ 0.3 for mSUSY ~ 1 TeV & QWe / QWe ~ 5% Kurylov, Ramsey-Musolf, Su 95% C.L. JLab 11 GeV Møller 0bbsensitivity 111/ ~ 0.06 for mSUSY ~ 1 TeV Probing SUSY with PV eN Interactions 12k ~ 0.3 for mSUSY ~ 1 TeV & QWe / QWe ~ 5% 0bbsensitivity 111/ ~ 0.06 for mSUSY ~ 1 TeV LFV Probes of RPV: !e k31 ~ 0.15 for mSUSY ~ 1 TeV LFV Probes of RPV: !e k31 ~ 0.03 for mSUSY ~ 1 TeV Comparing Qwe and QWp “DIS Parity” SUSY Kurylov, R-M, Su SUSY loops dark matter QWp,SUSYQuickTime™ QWp,SM and a TIFF (Uncompressed) decompressor are needed to see this picture. Linear collider E158 &QWeak JLab Moller RPV 95% CL QWe, SUSY QWe, SM Comparing AdDIS and Qwp,e e RPV p Loops Low Energy Probes of SUSY We’re making progress… …won’t leave until the job is done… …and open to new ideas. Back Matter -Nucleus DIS: SUSY Loop Corrections wrong sign -Nucleus DIS: RPV Effects