Transcript Document

Low Energy Precision Tests of
Supersymmetry
M.J. Ramsey-Musolf
Caltech
Wisconsin-Madison
M.R-M & S. Su, hep-ph/0612057
J. Erler & M.R-M, PPNP 54, 351 (2005)
QuickTime™ and a
TIFF (U ncompressed) decompressor
are needed to see this picture.
Outline
I.
Motivation: Why New Symmetries ?
Why Low Energy Probes ?
II. Prime Suspect: Supersymmetry
III. Low Energy Precision Tests
• Weak Decays
• PVES
I.
Motivation
Why New Symmetries ?
Why Low Energy Probes ?
Fundamental Symmetries & Cosmic History
Electroweak symmetry
Puzzles thebreaking:
Standard
Model
can’t solve
Higgs
?
1.
2.
3.
4.
Origin of matter
Unification & gravity
Weak scale stability
Neutrinos
Beyond the SM
What are the symmetries
(forces) of the early
universe beyond those of
the SM?
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Baryogenesis: When?
CPV? SUSY? Neutrinos?
WIMPy D.M.: Related
to baryogenesis?
“New gravity”? Lorentz
violation? Grav baryogen ?
?
Weak scale
baryogenesis
can
Beyond the
SMbe
tested experimentally
SM“Known
symmetry
(broken)
Unknowns”
Cosmic Energy Budget
Fundamental Symmetries & Cosmic History
Early universe
Present universe
Standard Model
4 for
A “near miss”
2
grand unification
g
Gravity
i
Is there unification?
What new forces are
responsible ?
Weak scale
High energy desert
log 10 ( / 0 )
Planck scale
Fundamental Symmetries & Cosmic History
Early universe
2
GF ~ 1 Muniverse
Present
W EAK
Weak Int Rates:
Solar burning
Element abundances
Standard Model
4
Weak scale
2
gi
unstable:
Why is GF
so large?
Weak scale
Unification
Neutrino
mass Origin of
matter
High energy desert
log 10 ( / 0 )
Planck scale
There must have been additional
symmetries in the earlier Universe to
• Unify all matter, space, & time
• Stabilize the weak scale
• Produce all the matter that exists
• Account for neutrino properties
• Give self-consistent quantum gravity
Supersymmetry, GUT’s, extra dimensions…
What are the new fundamental
symmetries?
Two frontiers in the search
Collider experiments
(pp, e+e-, etc) at higher
energies (E >> MZ)
Large Hadron Collider
Ultra cold neutrons
CERN
High energy
physics
Indirect searches at
lower energies (E < MZ)
but high precision
LANSCE, NIST, SNS, ILL
Particle, nuclear
& atomic physics
Precision Probes of New Symmetries
Electroweak symmetry
New Symmetries
breaking: Higgs ?
1.
2.
3.
4.
Origin of Matter
Unification & gravity
Weak scale stability
Neutrinos

˜

e
W
˜0


 

˜


e



QuickTime™ and a
TIFF (Uncompress ed) dec ompres sor
are needed to s ee this pic ture.
QuickTi me™ and a
T IFF (Uncom pressed) decom pressor
are needed to see this picture.
QuickT ime ™an d a
TIFF ( Uncomp res sed) deco mpre ssor
ar e need ed to see this pictur e.
QuickTime™ and a
TIFF (Uncompr essed) decompressor
are needed to see this picture.
Beyond the SM
QuickTime™ and a
TIFF (Uncompress ed) dec ompres sor
are needed to s ee this pic ture.
SM symmetry (broken)
Precision Probes of New Symmetries
Direct
Measurements
Radiative
corrections
Probing Fundamental
• Precision
measurements
Symmetries
beyond
predicted
a range
for mt
the SM:
before
top quark discovery
low• mUse
mb !
t >> precision
energy measurements
• mt is consistent with that
to probe virtual effects
range
of new symmetries &
• Itcompare
didn’t have
tocollider
be that
with
way
results
Stunning SM Success
J. Ellison, UCI

Precision, low energy measurements can
probe for new symmetries in the desert
Precision ~ Mass Scale
NEW
O
 M 
 SM   
O
 M˜ 
NEW
2
M=m ~ 2 x 10-9

M=MW
exp ~
1 x 10-9
 ~ 10-3
Interpretability
• Precise, reliable SM predictions
• Comparison of a variety of observables
• Special cases: SM-forbidden or suppressed processes
II. Prime suspect: Supersymmetry
SUSY: a candidate symmetry of the
early Universe
• Unify all forces
3 of 4
• Protect GF from shrinking
Yes
• Produce all the matter that exists
Maybe so
• Account for neutrino properties
Maybe
• Give self-consistent quantum gravity
Probably
necessary
Couplings unify with SUSY
Early universe
Present universe
Standard Model
4
2
gi
Supersymmetry
High energy desert
Weak scale
log 10 ( / 0 )
Planck scale

SUSY protects GF from shrinking
 NEW
H0
˜ NEW

H0
H0

H0

M

2
WEAK


~ M  M  log terms
2

2
˜
=0 if SUSY is exact
SUSY may help explain observed
abundance of matter
Cold Dark Matter Candidate
0
Lightest SUSY particle
Baryonic matter: electroweak phase transition
Unbroken
phase
Broken phase
CP Violation
t˜
H
SUSY: a candidate symmetry of the
early Universe
Supersymmetry
Fermions
Bosons
e L,R , q L,R
e˜ L,R , q˜ L,R
˜ , Z˜ ,
˜, g
˜
W
˜ ,H
˜
Higgsinos H
u
d
W,Z , , g
gauginos
sfermions
Hu,Hd

0
˜ , Z˜ ,
˜
˜, H
˜
˜
W


,

u, d

Charginos,
neutralinos
SUSY must be a broken symmetry
105 new parameters: masses, mixing angles, CPV phases (40)
Superpartners have
not been seen
Theoretical models
of SUSY breaking
Models: relate weak scale parameters to each other at high
SUSY Breaking
scales (“hidden sector”)
M e˜  me
M q˜  mq
M ˜  MW ,Z ,
How is SUSY broken?
Visible
World
Hidden
World
Flavor-blind mediation
SUSY and R Parity
If nature conserves
PR
PR  1
3(B L)
1
2S
vertices have even
number of superpartners
Consequences
0
˜
 Lightest SUSY particle  
is stable
viable dark matter candidate
 Proton is stable
 Superpartners appear only in loops
R-Parity Violation (RPV)
L=1
WRPV = ijk LiLjEk + ijk LiQjDk +/i LiHu
+ ijkUiDjDk
B=1 proton decay:
Set ijk =0
Li, Qi
SU(2)L doublets
Ei, Ui, Di
SU(2)L singlets
RPV : Four-fermion Operators
e
e

d
e
k
e˜ R
j
q˜ L
12k
1j1
12k


e
1j1

d
L=1
L=1
 12k 
12k

2
2
˜eRk
4 2GF M

/
1j 1

/ 2
iji

2
4 2GF Mq˜ j
L
III. SUSY & Weak Decays

Weak Decays & SUSY
d  u e e

u
s  u e e
b  u e e

b-decay
W
˜

˜




0
 



n p e e

˜



GFb
 Vud 1 rb  r 

GF
SUSY
New physics

e
0


 
˜e
   
e  e
˜






O
 ~ 0.001
 SM
O
e
Vus Vub d 
 
Vcs Vcb s 
 
Vts Vtb b 
SUSY
A(Z,N)  A(Z 1,N 1) e  e
˜0

˜


e
c
Vud

t Vcd

Vtd

e

r
SUSY Radiative Corrections

W
Propagator





Vertex &
External
 leg




˜

W
˜0

W

 



e






˜




e


e 

e
W
˜ e
 W 
˜



0


˜


˜

e  
e


e˜ 

W


  ˜



0
˜




˜





˜


e

˜0


Box

˜


e

e
e

e



Weak Decays & SUSY
R Parity Violation
R-M,
V Flavor-blind
dSu
VKurylov,
VSUSY-
d  u e e

ud
us
breaking

u c t Vcd

V
MW  td
s  u e e

b  u e e

e
e
O



~ 0.001



SM
12k
 12k ˜

n  p e e e  O
 
b-decay
e˜
˜

˜
0
e
SUSY
k 
W
R







d

A(Z,N)q˜ A(Z 1,N 1) e  e
˜0


ee
 
˜e

   
e  e

˜

e




0



j
L
˜


1j1




1j1
e d

ub
 
Vcs Vcb s 
CKM Unitarity
 
Vts Vtb b 
CKM, (g-2),
MW, Mt ,…
b
F

F
APV
l2
G
 Vud 1 rb  r 
G
M˜ L  Mq˜ L
Kurylov,
No
long-lived LSPNew
or SUSY
physics
DMR-M
SUSY
RPV

Weak decays
d  u e e

u
s  u e e
b  u e e

kaon decay

0 
K   e  e

Value of Vus important
c
Vud

t Vcd

Vtd
Vus Vub d 
 
Vcs Vcb s 
 
Vts Vtb b 
GFK
 Vus 1 rK  r 

GF

New physics:
too small
Situation
Unsettled
UCNA
CKM Summary: PDG04
CKM Summary: New Vus & tn ?
New tn !!
Vus & Vud
theory ?
UCNA
New 0+
info
Weak decays & new physics
d  u e e

u
s  u e e
b  u e e

˜


W

˜0



e
 


u˜



d
Vus Vub d 
 
Vcs Vcb s 
 
Vts Vtb b 
pe  p
pe
dW 1 a
 An  
E e E
Ee

˜0

u


˜

O
 ~ 0.001
 SM
O
e
SUSY
c
Vud

t Vcd

Vtd
Correlations
e
 
 
˜e

˜




e
SUSY
Non (V-A) x (V-A)
interactions: me/E
b-decay at SNS, RIACINO?
Weak decays & SUSY : Correlations
Chiral symmetry breaking in SUSY
˜0

u
Is SB / mf as in SM ? u˜
˜e




J


d
e

˜

e



Future
exp’t ?
 J  p

Profumo,
R-M, Tulin
Large symmetry
breaking: New
SUSY models
Mass suppressed 
symmetry breaking:
“alignment” models
Collider signature:
SUSY but only SMlike Higgs
Pion leptonic decay & SUSY
SM strong interaction
effects: parameterized
by F Hard to compute


SM radiative
corrections
also have
QCD effects





˜0

u

To probe effects of new
physics in NEW we need
to contend with QCD 

˜

u˜




d

˜











Pion leptonic decay & SUSY
New TRIUMF, PSI

Leading QCD uncertainty:
Marciano
& Sirlin
˜0

u
e
˜e

u˜


d

˜






e
 
?
Can we do better on


 Tulin, Su, R-M

˜


d

˜




Prelim

u˜
vs


˜0

u


Probing Slepton Universality




Min

(GeV)

Lepton Flavor & Number Violation
e

Present universe
Early universe
 Y1



MEG: B!e ~ 5 x
e
 
AZ,N 
R=
10-14

MECO: B!e~ 5 x
Also PRIME
AZ,N 
B!e
 1
L


B!e
 1
S
?
?
log 10 ( / 0 )
10-17
Weak scale
Planck scale
Lepton Flavor & Number Violation
0bbdecay


e
W
u
d
MEG:
LightBM
~ 5 x 10-14?
!eexchange
u

e
e

M
u W



d





Raidal, Santamaria;
Cirigliano, Kurylov, RM, Vogel
LFV Probes of RPV: !e
e

AZ,N


e˜


e˜ 
e
u
AZ,N 

d



Heavy particle exchange
?
-17
MECO:
B
~
5
x
10
!e


˜


0

d
e
e

k11/ ~ 0.008
0.09 for
formm
TeV
SUSY
SUSY~~11TeV


e
e




e
e
 * 
Logarithmic enhancements of R

Low scale LFV: R ~ O(1)

 * 


e

GUT scale LFV: R ~ O


Lepton Flavor & Number Violation
e
e
e
e
e
e

N






N



N
N
Short distance contributions



Long range nuclear effects (’s)

N
N
Faessler
 et al
Prezeau, R-M,
Vogel
Lepton Flavor & Number Violation
111/ ~ 0.06 for mSUSY ~ 1 TeV
1000
0bbsignal equivalent to
Degenerate
100
Effective bb Mass (meV)
degenerate hierarchy
Inverted
10
Normal
Loop contribution to m of
inverted hierarchy scale
m
Ue1 = 0.866
1
Ue2 = 0.5
m
2
2
atm
s ol
= 70 meV
= 2000 meV
2
2
Ue3 = 0
0.1
2
1
3
4
5 6 7
2
3
4
5 6 7
10
100
Minimum Neutrino Mass (meV)
2
3
4
5 6 7
1000
IV. SUSY & PVES
QW and SUSY Radiative Corrections
Tree Level
Q g g
f
W
f
V
e
A
Flavor-dependent
Radiative Corrections
Q  PV (2I  4Qf  PV sin2  W )   f

f
W
f
3
Normalization
Constrained
by Z-pole
precision observables
Scale-dependent effective
weak mixing
Flavor-independent
SUSY Radiative Corrections
e
Z
Propagator

e


Vertex &
External leg

0

e 

˜

e˜ 
˜

 
Z 
e

e˜ 





e

˜

e

 Z
˜

0

f

f



f˜ 
f


f


f


 
˜e


˜e


f
 e˜
˜



0

e
f

˜

e

e
 f
0



Z

˜0


Box

e˜ 
e
f

f
Probing SUSY with PV eN Interactions
e
Z

SUSY
dark matter

e


0
˜


Z0


 f
 

SUSY
loops


˜

 
e˜ 
e
f
e



 e˜




f

f


0 ->
QuickTime™ and a TIFF (Uncompressed)
e+e decompressor are needed to see this picture.
 is Majorana
e
e

˜ Rk
e
RPV 95% CL fit to
12k decays, M ,etc.
12k
weak
W


Kurylov, Su, MR-M

Probing SUSY with PV eN Interactions
QWP, SUSY / QWP, SM
Lattice for fK+
Large NC for fK+
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
QWe, SUSY / QWe, SM
Probing SUSY with PV eN Interactions
12k ~ 0.3 for mSUSY ~ 1 TeV & QWe / QWe ~ 5%
Kurylov, Ramsey-Musolf, Su
95% C.L.
JLab 11 GeV
Møller
0bbsensitivity
111/ ~ 0.06 for mSUSY ~ 1 TeV
Probing SUSY with PV eN Interactions
12k ~ 0.3 for mSUSY ~ 1 TeV & QWe / QWe ~ 5%
0bbsensitivity
111/ ~ 0.06 for mSUSY ~ 1 TeV
LFV Probes of RPV:
!e
k31 ~ 0.15 for mSUSY ~ 1 TeV
LFV Probes of RPV: !e
k31 ~ 0.03 for mSUSY ~ 1 TeV
Comparing Qwe and QWp
“DIS Parity”
 SUSY
Kurylov, R-M, Su
SUSY loops
dark matter
QWp,SUSYQuickTime™
QWp,SM and a TIFF (Uncompressed) decompressor are needed to see this picture.
Linear
collider
E158 &QWeak
JLab Moller
RPV 95% CL
QWe, SUSY QWe, SM
Comparing AdDIS and Qwp,e
e
RPV
p
Loops
Low Energy Probes of SUSY
We’re making
progress…
…won’t leave
until the job is
done…
…and open to
new ideas.
Back Matter
-Nucleus DIS: SUSY Loop Corrections
wrong
sign
-Nucleus DIS: RPV Effects