Transcript Document

Nuclear Physics and the
New Standard Model
M.J. Ramsey-Musolf
Quick Time™ a nd a
TIFF ( Un compr ess ed ) de co mp res sor
ar e n eed ed to s ee this pic tur e.
Wisconsin-Madison
NPAC
Theoretical Nuclear, Particle, Astrophysics & Cosmology
http://www.physics.wisc.edu/groups/particle-theory/
Taiwan , June 2008
The Big Picture
The
Nuclear
next physics
decade studies
presents
ofNP
ns &
with a
historic
fundamental
opportunity
symmetries
to buildplayed
on thisan
legacy
essential
in developing
role in developing
the “new
&
Standard
confirming
Model”
the Standard Model
Fifty years
of PV in
nuclear
physics
The
Our value
role has
of our
been
contribution
broadly will be
broadly
recognized
recognized
within and
outside
beyond
the NP
field
Solar ns &
the neutrino
revolution
Goals
•
Show how studies of fundamental symmetries &
neutrinos in nuclear physics can complement high
energy searches for the “new Standard Model”
•
Introduce some of the basic ideas & theoretical
machinery, but leave details to your future reading
•
Describe recent progress & open problems
•
Encourage you to learn more and get involved in
research !
Outline
I. Overview & Motivation
II. Illustrative Scenario: Supersymmetry
III. Neutrinos: Lepton Number & n
IV. EDMs & the Origin of Matter
V. Electroweak Precision Observables
VI. Weak Decays
VII. Neutral Current Processes
References
•
“ Low Energy Precision Test of Supersymmetry”,
M.J. Ramsey-Musolf & S. Su, Phys.Rept.456:188, 2008, ePrint: hep-ph/0612057Model”
•
“Low energy tests of the weak interaction”, J. Erler & M. J.
Ramsey-Musolf , Prog.Part.Nucl.Phys.54:351 442, 2005, ePrint: hep-ph/0404291
Plus many references
therein…
I.
Motivation
•
Why New Symmetries ?
•
Why Low Energy Probes ?
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Beyond the SM
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
It utilizes a simple and elegant
symmetry principle
SU(3)c x SU(2)L x U(1)Y
to explain the microphysics of
the present universe
• Big Bang Nucleosynthesis
(BBN) & light element
abundances
• Weak interactions in stars
& solar burning
•Standard
Supernovae
& neutron
Model
puzzles
stars
Standard Model successes
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
• Non-zero vacuum
expectation value of
neutral Higgs breaks
electroweak sym and
gives mass:
• Where is the Higgs
particle?
Puzzles the St’d Model may or
may not solve:
SU(3)c x SU(2)L x U(1)Y
U(1)EM
How is electroweak symmetry broken?
How do elementary
particles
getsuccesses
mass ?
• Is Standard
there more Model
than
puzzles
Standard
Model
one?
Fundamental Symmetries & Cosmic History
Electroweak
symmetry
Puzzles the Standard
Model
can’t solve
breaking: Higgs ?
1.
2.
3.
4.
Origin of matter
Unification & gravity
Weak scale stability
Neutrinos
Beyond the SM
What are the symmetries
(forces) of the early
universe beyond those of
the SM?
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Baryogenesis: When?
CPV? SUSY? Neutrinos?
WIMPy D.M.: Related
to baryogenesis?
“New gravity”? Lorentz
violation? Grav baryogen ?
• C: Charge Conjugation
?
• P: Parity
Beyond the SM
SM symmetry (broken)
Cosmic Energy Budget
Fundamental Symmetries & Cosmic History
Early universe
Present
universe
Unification?
Use gauge coupling energydependence look back in time
Standard Model
4
2
gi


Weak scale

e  e()


g  g()

High energy desert
log10 ( / 0 Energy
)
Scale ~ T
Planck scale
Fundamental Symmetries & Cosmic History
Early universe
Present universe
Standard Model
4  for
A “near miss”
2
grand unification
g
Gravity
i
Is there unification?
What new forces are
responsible ?
Weak scale
High energy desert
log10 ( / 0 )
Planck scale
Fundamental Symmetries & Cosmic History
Early universe
2
GF ~ 1 Muniverse
Present
WEAK
Weak Int Rates:
Solar burning
Element abundances
Standard Model
4
Weak scale
2
gi
unstable:
Why is GF
so large?
Weak scale
Unification
Neutrino
mass Origin of
matter
High energy desert
log10 ( / 0 )
Planck scale
There must have been additional
symmetries in the earlier Universe to
• Unify all matter, space, & time
• Stabilize the weak scale
• Produce all the matter that exists
• Account for neutrino properties
• Give self-consistent quantum gravity
Supersymmetry, GUT’s, extra dimensions…
What are the new fundamental
symmetries?
Two frontiers in the search
Collider experiments
Indirect searches at
(pp, e+e-, etc) at higher
lower energies (E < MZ)
energies (E >> MZ)
but high precision
Large Hadron Collider
Ultra cold neutrons
CERN
High energy
physics
LANSCE, NIST, SNS, ILL
Particle, nuclear
& atomic physics
Precision Probes of New Symmetries
Electroweak symmetry
New Symmetries
breaking:LHC:
Higgs
energy?
frontier
1.
2.
3.
4.
Origin of Matter
Unification & gravity
Weak scale stability 
Neutrinos
? 
n
ne
˜
n
W
˜0



˜




e

QuickT ime™ and a
T IFF (Uncompressed) decompressor
are needed to see this picture.
QuickTime™ and a
TIFF(Uncompressed) decompressor
are needed to see this picture.
Qu ickT ime ™ a nd a
TIF F (U nco mpre sse d) de com pres sor
are nee ded to s ee th is pi cture .
Quic kTime™ and a
TIFF (Uncompres sed) dec ompressor
ar e needed to see this picture.
Low-energy: precision
frontier
Beyond the SM
Qui ckT ime™ and a
T IFF (Uncompressed) decompressor
are needed to see this picture.
SM symmetry (broken)
Precision & Energy Frontiers
Direct
Measurements
Radiative
corrections
Precision
Probing Fundamental
Frontier:
• Precision
measurements
Symmetries
beyond
predicted
for scale
mt
GFZ a range
• Precision
~
Mass

1
r

r
quark
Z


theGSM:
before
top
discovery
F
• Look for pattern from a
low• mUse
mb !
t >> precision
variety
of
measurements
t
b W
Z
Z
W
energy
measurements
• mt is consistent with that
 •to
Identify
probe
virtual effects
t complementarity
t
range
 with
 symmetries
of new
collider
&

 searches

• Itcompare
didn’t have
tocollider
be that
with
way
• Special role: SM
results 
suppressed
processes
0
0


Stunning SM Success
J. Ellison, UCI

Precision, low energy measurements can
probe for new symmetries in the desert
Precision ~ Mass Scale
O
 M 
NEW  SM   
O
 M˜ 
NEW
2
M=m ~ 2 x 10-9

M=MW
exp ~
1 x 10-9
 ~ 10-3
Interpretability
• Precise, reliable SM predictions
• Comparison of a variety of observables
• Special cases: SM-forbidden or suppressed processes
II. Illustrative Case: SUSY
•
Why Supersymmetry ?
•
Key Features of SUSY
Couplings unify with SUSY
Early universe
Present universe
Standard Model
4
2
gi
Supersymmetry
High energy desert
Weak scale
log10 ( / 0 )
Planck scale
GF is Too Large
2
GF
g
1


2
2
2 8MW 2 WEAK

GF ~ 10-5/MP2
 NEW
H0
m  2 l
2
h
H0

l
WEAK ~ 250 GeV
2
WEAK
2
WEAK
~ M2

SUSY protects GF
 NEW
H0
˜ NEW

H0

H0
H0

2 
WEAK

 2

~ M  M  log terms
2

˜
=0 if SUSY is exact
GF & the “hierarchy problem”
SUSY Relation:
Quadratic divergence ~ UV2 cancels
After EWSB:
SUSY may help explain observed
abundance of matter
Cold Dark Matter Candidate
0
Lightest SUSY particle
Baryonic matter: electroweak phase transition
Unbroken
phase
Broken phase
CP Violation
t˜
H
SUSY: a candidate symmetry of the
early Universe
• Unify all forces
3 of 4
• Protect GF from shrinking
Yes
• Produce all the matter that exists
Maybe so
• Account for neutrino properties
Maybe
• Give self-consistent quantum gravity
Probably
necessary
Minimal
Supersymmetric
No new
coupling constants
Two Higgs vevs
Standard
Model (MSSM)
Supersymmetric HiggsSupersymmetry
mass, 
Fermions
Bosons
e L,R , q L,R
e˜ L,R , q˜ L,R
gauginos
˜ , Z˜ ,
˜, g
˜
W
W , Z , , g
Higgsinos
˜ ,H
˜
H
u
d
sfermions
H u, H d

0
˜
˜
˜
˜
˜
˜
W, Z ,, Hu, d   , 

Charginos,
neutralinos
SUSY and R Parity
If nature conserves
PR
PR  1
3(BL)
1
2S
vertices have even
number of superpartners
Consequences
0
˜
 Lightest SUSY particle  
is stable
viable dark matter candidate
 Proton is stable
 Superpartners appear only in loops
“Superpotential” : a convenient way to
derive supersymmetric
interactions
by
R-Parity
Violation
taking derivatives w.r.t. scalar fields
(RPV)
WRPV = lijk LiLjEk + lijk LiQjDk +/i LiHu
+ lijkUiDjDk
B=1 proton decay:
Set lijk =0
Li, Qi
SU(2)L doublets
Ei, Ui, Di
SU(2)L singlets
L=1
Four-fermion Operators
ne
e
l12k
e˜ Rk
q˜ Lj
l1j1
l12k
n

e
d
l1j1
e
d
L=1
L=1
 12 k 
l12 k
2
2
˜eRk
4 2GF M

/
1j 1

/ 2
ij i
l
4 2GF Mq2˜ j
L
SUSY must be a broken symmetry
Superpartners have
not been seen
M e˜  me
M q˜  mq
M ˜  MW ,Z ,
How is SUSY broken?
Theoretical models
of SUSY breaking
SUSY Breaking
Visible
World
Hidden
World
Flavor-blind mediation
MSSM SUSY Breaking
One solution: af ~ Yf
Superpartners have
not been seen
Theoretical models
of SUSY breaking
Gaugino mass
Triscalar interactions
Sfermion mass
~ 100 new parameters
40 new CPV phases
Flavor mixing parameters
How is SUSY broken?
O(1) CPV phases & flavor
mixing ruled out by expt:
“SUSY CP” & “SUSY
flavor” problems
MSSM: SUSY Breaking Models I
Visible Sector:
Hidden Sector:
SUSY-breaking
MSSM
Flavor-blind mediation
Gravity-Mediated (mSUGRA)
˜ , g˜
W˜ , Z˜ ,
H
f˜
f˜
M1 / 2
M
2
0
Hu
Hd
f˜
A0
b0
MSSM: SUSY Breaking Models II
Visible Sector:
Hidden Sector:
SUSY-breaking
MSSM
Flavor-blind mediation
Gauge-Mediated (GMSB)
f˜
˜ , g˜
W˜ , Z˜ ,
M1 / 2
messengers
a


4
W,Z,...
 a 
M     Ca
4
2
0
2
A0  0
b0  0
MSSM: SUSY Breaking Models III
Visible Sector:
Hidden Sector:
SUSY-breaking
MSSM
Flavor-blind mediation
Parameter evolution: mass
2
dM ˜f
dt
3
˜
  a C M
a
Mq˜  M˜
˜f
a
2
a1
at the weak scale
Gaugino-Higgsino Mixing
Chargino
T << TEW Mass Matrix
N11B
MC =
BINO
T ~TEW : scattering
~ ~
of H,W from
CPV
N
N H N H 
W
d
14 u
m 213cos
M 12
2
background field
W
mW 2 sin 
WINO

T << TEW : mixing
~ ~
~
of H,W to ~,
HIGGSINO
Neutralino Mass Matrix
M1
MN =
0
0
-mZ cos sin qW
mZ cos cos qW
M2
mZ sin sin qW
-mZ sin sin qW
-mZ cos sin qW
mZ cos cos qW
0
-
mZ sin sin qW
-mZ sin sin qW
-
0
Relic Abundance of SUSY DM
T << TEW : mixing
~ ~
~
of H,W to ~,
Neutralino Mass Matrix
M1
MN =
0
0
-mZ cos sin qW
mZ cos cos qW
M2
mZ sin sin qW
-mZ sin sin qW
-mZ cos sin qW
mZ cos cos qW
0
-
mZ sin sin qW
-mZ sin sin qW
-
0
N11B N12W N13HdN14Hu
BINO
˜ 10

t
t˜

˜ 10


+ res
t
WINO
HIGGSINO
~10
~ 0 , ~ 
i
~10
W,Z
+ coannihilation
j
W,Z
Sfermion Mixing
Sfermion mass matrix
˜ 2˜
M
fL
2
ˆ

M 
2
M

 LR
2 
M LR

2
˜ ˜ 
M
f R 
m f (  t an  A f )
M  
m f (  cot   A f )
2
LR
T ~TEW : scattering
~ ~
of fL, fR from
background field
T << TEW : mixing
~ ~
~ ~
of fL, fR to f1, f2
Qf < 0
Qf > 0
Test
“Superpotential” : a convenient way to
derive supersymmetric interactions by
taking derivatives w.r.t. scalar fields
~ 100 new parameters
40 new CPV phases
Flavor mixing parameters
No new coupling constants
Two Higgs vevs
˜ NEW

H0

 NEW
H Higgs mass, 
Supersymmetric
0
H0
H0

Neutral Current Interactions II
Neutral current l+f --> l+f at one loop:
Normalization:
Normalize to G: Remove r
QuickTime™ and a
decompressor
are needed to see this picture.
Vector & axial vector couplings:
Weak mixing:
Vertex &
ext leg
QuickTime™ and a
decompressor
are needed to see this picture.
The  parameter:
Weak mixing:
Can impose constraints from global fits to EWPO via
S,T,U-dependence of these quantities