Transcript Document

Nuclei as Laboratories: Nuclear Tests
of Fundamental Symmetries
M.J. Ramsey-Musolf
N. Bell
V. Cirigliano
J. Erler
B. Holstein
A. Kurylov
C. Lee
C. Maekawa
S. Page
G. Prezeau
S. Profumo
S. Tulin
B. Van Kolck
P. Vogel
S. Zhu
Nuclear Science
Cosmic Energy Budget
Dark Matter
Baryons
Dark Energy
The mission: Explain the origin, evolution, and
structure of the baryonic matter of the Universe
Nuclear Science
Cosmic Energy Budget
Dark Matter
Baryons
Three frontiers:
Dark Energy
• Fundamental symmetries & neutrinos
• Nuclei and nuclear astrophysics
• QCD
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Beyond the SM
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
Electroweak
symmetry
Standard Model
“unfinished business”
breaking: Higgs ?
How does QCD affect the
weak qq interaction?
Is there a long range weak
NN interaction?
Beyond the SM
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
Electroweak
symmetry
Puzzles the Standard
Model
can’t solve
breaking: Higgs ?
1.
2.
3.
4.
Origin of matter
Unification & gravity
Weak scale stability
Neutrinos
Beyond the SM
What are the symmetries
(forces) of the early
universe beyond those of
the SM?
SM symmetry (broken)
What are the new fundamental symmetries?
•
Why is there more matter than antimatter
in the present universe?
Electric dipole moment searches
•
What are the unseen forces that
disappeared from view as the universe
cooled?
Precision electroweak: weak decays, scattering, LFV
•
What are the masses of neutrinos and
how have they shaped the evolution of the
universe?
Neutrino oscillations, 0nbb-decay, q13 , …
Tribble report
What is the origin of baryonic matter ?
Cosmic Energy Budget
E
d  dS
Dark Matter


Baryons
n EDM
B (7.3 2.5) 1011
YB  
s (9.2 1.1) 1011
BBN
WMAP
Dark Energy

dS E

h
T-odd , CP-odd
by CPT theorem
What are the
Searches
for permanent
quantitativeelectric
implications
dipoleof new
moments
EDM
experiments
(EDMs) of
forthe
explaining
neutron,the
electron,
origin of
andbaryonic
the
neutral atoms
component
probe of
new
theCP-violation
Universe ?
What is the origin of baryonic matter?
Electroweak symmetry
breaking: Higgs ?
Baryogenesis: When?
SUSY? Neutrinos? CPV?
Weak scale baryogenesis
can be tested by exp’t
If ruled out: more
speculative ideas (n’s) ?
?
Beyond the SM
SM symmetry (broken)
Cosmic Energy Budget
EW Baryogenesis: Standard Model
Sakharov:
Weak Scale Baryogenesis
Anomalous Processes
• B violation
• C & CP violation
J B
• Nonequilibrium
dynamics
A
qL

Sakharov, 1967
W

W
Different vacua: D(B+L)= DNCS

Kuzmin, Rubakov, Shaposhnikov
McLerran,…


Sphaleron Transitions
EW Baryogenesis: Standard Model
Shaposhnikov
2
J  s12 s13 s23 c12 c13
c 23 sin 13
 (2.88  0.33) 105
Weak Scale Baryogenesis
mt4 mb4 mc2 ms2
13

3
10
MW4 MW4 MW2 MW2
• B violation
• C & CP violation
• Nonequilibrium
dynamics


F
F
1st order
2nd order
Sakharov, 1967



• CP-violation too weak
• EW PT too weak
Increasing mh



Baryogenesis: New Electroweak Physics
90’s:
Weak Scale Baryogenesis
• B violation
Cohen, Kaplan, Nelson
Joyce, Prokopec, Turok
Unbroken phase
Topological transitions
new
• C & CP violation
• Nonequilibrium
dynamics
(x)
Broken phase

1st order phase transition

CP Violation
Sakharov, 1967
new
• Is it viable?
• Can experiment constrain it?
• How reliably can we compute it?

new


new
e



EDM Probes of New CP Violation
CKM
f
dSM
dexp
dfuture
e
 1040
 1.6 1027
 1031
n
 1030
 6.3 1026
 1029
Hg
 1033
 2.11028
 1032

 1028
 1.11018
 1024
199
Also 225Ra, 129Xe, d
If new EWK CP violation is responsible for abundance
If an EDM is seen, can we identify the new physics?
of matter, will these experiments see an EDM?

EDM constraints & SUSY CPV
Lee et al
(x)
new

•
BBN
WMAP
de

EDMs of different systems provide
Acomplementary probes: more A
199Hg
atomic experiments (RIA)
de
199Hg
• Nuclear theory: reliable calc’s
BAUEDM dependence
of atomic

on CPV and other new
physics parameters
(RIA?)

BAU
new


new
• Nuclear theory: reliable calcs of YB
Different choices for SUSY parameters






new
e


Fundamental Symmetries & Cosmic History
Electroweak
symmetry?
Unseen Forces:
Supersymmetry
breaking: Higgs ?
1.
2.
3.
4.
Unification & gravity
Weak scale stability

Origin of matter
Neutrinos
n
˜
n
ne
W
˜0


 

˜


e


Beyond the SM

SM symmetry (broken)

Weak decays & new physics
R Parity Violation
R-M,
V Flavor-blind
dSu
VKurylov,
VSUSY-
d  u e ne

ud
us
breaking

u c t Vcd

V
MW  td
s  u e ne

b  u e ne
n
ne
ne
O



~ 0.001



SM
12k
 12k ˜

n  p e ne e n O
 
b-decay
e˜
˜
n
˜
0
e
SUSY
k 
W
R







nd


ene
 n
˜e

   
e n e

˜

e




0



j
L
˜
n

1j1



A(Z,N)q˜ A(Z 1,N 1) e n e
˜0


1j1
e d
CKM unitarity ?

ub
 
Vcs Vcb s 
CKM Unitarity
 
Vts Vtb b 
CKM, (g-2),
MW, Mt ,…
b
F

F
APV
l2
G
 Vud 1 Drb  Dr 
G
M˜ L  Mq˜ L
Kurylov,
No
long-lived LSPNew
or SUSY
physics
DMR-M
SUSY
RPV

b-decay
Weak decays
b
F

F
G
 Vud 1 Drb  Dr 
G
n  p e ne
A(Z,N)  A(Z 1,N 1) e  n e
    0 e n e
SM theory input
A(Z 1,N
p 1) 
ne
W



n
A(Z,N)
Recent Marciano
Nuclear
structure &
effects?
Sirlin
e
MW

ˆ  M Z2 
GF 

ln 2  CW ()
2 2    

Weak decays & new physics
d  u e ne

u
s  u e ne
b  u e ne
n
˜
n

W

˜0



ne
 


u˜



d
Vus Vub d 
 
Vcs Vcb s 
 
Vts Vtb b 
pe  pn
pe
dW 1 a
 An  
E e En
Ee

˜0

u


˜

O
 ~ 0.001
 SM
O
e
SUSY
c
Vud

t Vcd

Vtd
Correlations
ne
 
 n
˜e

˜




e
SUSY
Non (V-A) x (V-A)
interactions: me/E
b-decay at RIA?
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Are they their own antiparticles?
LFV & LNV ?
Why are their masses so small?
What is mn?
Can they have magnetic moments?
Implications of mn for neutrino interactions ?
Neutrinos ?
Beyond the SM
SM symmetry (broken)
0nbb - decay probes the charge conjugation
properties of the neutrino
e
e
W



e

e
e


nM

AZ,N


AZ,N 
u

W

AZ  2,N  2
AZ  2,N  2



e
nM
W
W

d
d
u





e
e
Light nM : Nuclear matrix
difficult
to
 elements
0
 
compute

˜
e
u
e˜ 
u
EFF 
2

2i
mn

d
  U ek mk e
k
d
0nbb - decay: heavy particle exchange
e
e

e

AZ,N 
u


AZ  2,N  2
W



e

u

How do we compute & separate
 exchange effects?
heavy particle
nM
W
d

e
e˜ 

d

e
  0
e˜ 

d
u
d
u
LF and LN: symmetries of the early universe?
Lepton flavor: “accidental”
Electroweak symmetry

symmetry of the SM breaking: Higgs ?
LFV initimately connected
with LNV in most models



R=
e
MEG: B!e ~ 5 x 10-14
B!e
?
 
B!e

AZ,N 
e

AZ,N 
MECO: B!e ~ 5 x 10-17
Beyond the SM

SM
symmetry
(broken)

Also
PRIME
LF and LN: symmetries of the early universe?
0nbbdecay e
Electroweak symmetry

breaking: Higgs ?
e



nM

W
u W
u

 
d
d

MEG:
B
~
5
x 10-14

 !e

?
?Light nM exchange
 
˜
n

e




 * 
D

e
e
e





*

Logarithmic enhancements of R
Beyond the SM

Low scale LFV: R ~ O(1)
u
 
AZ,N


e
e
e
e
e
e˜

e
0


d

e˜ 
u
AZ,N

d
-17
MECO: B
!e ~ 5x 10
Heavy particle exchange ?
SM
symmetry
(broken)

Also
 PRIME
 
GUT scale LFV: R ~ O
0nbb - decay: heavy particle exchange
How do we compute & separate
heavy particle exchange effects?
e e
 
u
d 
AZ,N
e
e e
u

u
 


AZ  2,Nd 2

e

u

W



4 quark operator,
as in hadronic PV

nM
W
d

e
e˜ 

d

e
  0
e˜ 

d
u
d
u
0nbb - decay: effective field theory
We have a clear separation of scales
 bb     kF
L-violating
new physics

Non-perturbative
QCD
Nuclear dynamics
0nbb - decay in effective field theory
Operator classification
L(q,e)
  MWEAK

!
L,N,e
  M HAD
Spacetime & 
chiral
transformation properties
0nbb - decay in effective field theory
Operator classification
L(q,e) =
e.g.
GF2

bb
  MWEAK
14

c
ˆ
C
(

)
O
e

e
 j
j
j
j1
ab
 a
b
ˆ
O1  qL   qL qR    qR

0nbb - decay: a = b = +

 h.c.
0nbb - decay in effective field theory
Operator classification
  MWEAK
ab
 a
b
ˆ
O1  qL   qL qR    qR

Chiral transformations: SU(2)L x SU(2)R



qL  LqL
qR  RqR

 
 expiqL  PL 
R
 R 2 R 
L
Oˆ1ab  (3L , 3R )
Parity transformations: qL $ qR
0nbb
 - decay: a = b = +

ˆ   O
ˆ 
O
1
1


0nbb - decay in effective field theory
e
e
e
e
e
e




N


N

K  p



2
N
N
1

K NN p



N
N
K NNNN p

K O (p

effects for
-2) ,for
0) for
0 ), Enhanced
1 ), etc.
ˆ
ˆ
O (p
K
KSystematic
,
can
be
O
(
p
O
(
p
operator
classification
O NNNN
O
NN
1
3
some models ?
0
An open question
Is the power counting of operators sufficient to
understand weak matrix elements in nuclei ?
n
g
 9 2
2
n
n
Oˆ 0Lnbb
p p
p  , f 

32
 
76Ge

 
76Se

 0, ,9
 0, ,5
2

52
2
An open question
Is the power counting of operators sufficient to
understand weak matrix elements in nuclei ?
L
ˆ
O0nbb
 0, ,9
 0, ,5
Oˆ 0Lnbb0
M fi
~
p2
  0

 2,  0

M fi
~  p2
 0, 
2
Oˆ 0Lnbb2

M fi
~  p 4
 4, 
0
L 4
ˆ
O0nbb etc.
naive

M fi
~

p0
Oˆ 0Lnbb2
An open question
Complications:
• Bound state wavefunctions (e.g., h.o.) don’t
obey simple power counting
• Configuration mixing is important in heavy
nuclei
Is the power counting of operators sufficient to
understand weak matrix elements in nuclei ?
• More theoretical study required (RIA)
• Hadronic PV may provide an empirical test
Fundamental Symmetries & Cosmic History
Electroweak
symmetry
Standard Model
“unfinished business”
breaking: Higgs ?
How does QCD affect the
weak qq interaction?
Is there a long range weak
NN interaction?
Beyond the SM
SM symmetry (broken)
The weak qq force is short range
W  ,Z 0
q
W,Z ~ 0.002 fm  RCORE
q

Meson-exchange model
 
 , , 
N


N
Use parity-violation to filter
out EM & strong interactions

Seven PV mesonnucleon couplings
h1 , h0,1,2 , h0,1, h1 
Desplanques, Donoghue,
&Holstein (DDH)
Is the weak NN force short range ?
  , , 
N


T=1 force
N

Long range: -exchange?
Is the weak NN force short range ?
  , , 
N
N



b

0 ,0
0  ,1

T=1 force

1 ,0


18
F

18
0  ,1
Ne
Analog
 2-body
matrix elements
Model
independent
Is the weak NN force short range ?
  , , 
N
N


T=1 force

Anapole

moment
Boulder, atomic PV
133
Cs
h ~ 10 g
Is the weak NN force short range ?
  , , 
N

N
• Problem with expt’s

• Problem with nuc th’y

• Problem with model
T=1 force
• No problem (1)
EFT
Hadronic PV: Effective Field Theory

PV Potential





Long Range


Medium Range
Short Range

h1NN
k 1a
NN
1,2,3
s , t ,  t
h1NN
O(p-1)
O(p)
O(p)
O(p)







A program of few-body measurements
Pionless theory
Ab initio few-body calcs
Done
mN  pp  1.22 AL (pp)
LANSCE
mN t   9.35 AL (np  d )
HARD*
mN  pn  1.6 AL (pp)  3.7 AL (p )  37 A (np  d )  2 P (np  d )
mN t  0.4 AL (pp)  0.7 AL (p )  7 A (np  d )  P (np  d )
d n
mN nn  1.6 AL (pp)  0.7 AL (p )  33.3 A (np  d ) 1.08 P (np  d ) 0.83
dz

 pp  0s  1s  2s
6
nn  0s  1s  2s
6
 pn  0s  2 2s
6
NIST
*HIGS
AL d  np
A program of few-body measurements
Complete determination of PV NN &
NN interactions through O (p)
Attempt to understand
the i, h etc. from
QCD
Attempt to understand
nuclear PV observables
systematically
Are the PV LEC’s
“natural”?
Does EFT power
counting work in nuclei ?
Hadronic PV in n-rich nuclei ?

Hadronic PV as a probe
• Determine VPV through O (p)
from PV low-energy few-body
studies where power counting
works

O ( p -1 )
e
• Re-analyze nuclear PV
observables using this VPV
O ( p)
e
e
e
e
e we would have some
•If successful,
indication
that operator


 power


 

counting works in nuclei




N
N
•
Apply
to
0nbb-decay


N
K  p2


N
K NN p1

N

N
K NNNN p 0

Conclusions
• Nuclei provide unique and powerful laboratories
in which to probe the fundamental symmetries
of the early universe
• RIA will provide opportunities to carry out new and
complementary experiments whose impact can
live on well into the LHC era
• A number of theoretical challenges remain to be
addressed at the level of field theory, QCD, and
nuclear structure
• New experimental and theoretical efforts in nuclear
structure physics are a key component of this quest