Nuclei as Laboratories: Nuclear Tests of Fundamental

Download Report

Transcript Nuclei as Laboratories: Nuclear Tests of Fundamental

Looking Through The Mirror: Parity
Violation in the Future
M.J. Ramsey-Musolf
+ many students, postdocs, collaborators, and
colleagues
Fundamental Symmetries & Cosmic History
What are the fundamental symmetries
that have governed the
microphysics of
the evolving
universe?
• Parity as a (broken) symmetry
• Parity violation as a probe of other
symmetries
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Beyond the SM
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
Electroweak
Paritysymmetry
the Standard Model
breaking: Higgs ?
Observations of PV in b-decay,
electron scattering, and atoms
taught us about SU(2)Lx U(1)Y
symmetry and its breaking
Beyond the SM
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
Electroweak
Parity: symmetry
Standard Model & Beyond
breaking: Higgs ?
Observations of PV in b-decay,
electron scattering, atoms, e+eannihilation are providing insights
about the SU(3)C sector of the
SM & the “new” SM
Beyond the SM
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
Electroweak symmetry
SMHiggs
“unfinished
business”:
breaking:
?
What is the internal landscape
of the proton?
Sea quarks and gluons
Beyond the SM
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
Electroweak
symmetry business”:
SM “unfinished
breaking: Higgs ?
How do weak interactions of
hadrons reflect the weak qq force ?
Are QCD symmetries (chiral, large NC,…)
applicable? Is there a long range weak NN
interaction?
Beyond the SM
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
Electroweak
symmetry
Puzzles the Standard
Model
can’t solve
breaking: Higgs ?
1.
2.
3.
4.
Origin of matter
Unification & gravity
Weak scale stability
Neutrinos
Beyond the SM
What are the symmetries
(forces) of the early
universe beyond those of
the SM?
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
What are the fundamental symmetries
that have governed the
microphysics of
the evolving
universe?
• Parity violation as a probe of the proton’s
internal structure (sea quarks, twist)
• Parity violation as probe of the hadronic
weak interaction
• Parity violation as a probe of additional
symmetries of the early universe
Internal “landscape” of the proton
How does QCD package and distribute quarks
and gluons inside the proton?
q
q
Constituent quarks (QM)
QP ,P
Current quarks (QCD)
FP2(x)
We can uncover the sea with PV
Light QCD quarks:
Heavy QCD quarks:
u
mu ~ 5 MeV
c
mc ~ 1500 MeV
d
md ~ 10 MeV
b
mb ~ 4500 MeV
s
ms ~ 150 MeV
t
mt ~ 175,000 MeV
ms ~ QCD : No clear scale
suppression, not necessarily
negligible; pure sea
s
Suppressed
bys
g
QCD/mq) 4 < 10 -4
(vector channel)
Probing the sea with PV ep scattering
Neutral Weak Form Factors
Kaplan and Manohar
McKeown
GP = Qu Gu + Qd Gd + Qs Gs

Gn = Qu Gd + Qd Gu + Qs Gs
, isospin
GPW = QuW Gu + QdW Gd + QsW Gs
Z0
SAMPLE (MIT-Bates), HAPPEX
(JLab), PVA4 (Mainz), G0 (JLab)
Gu , Gd , Gs
Probing the sea with PV ep scattering
e



e
p
e

p

p 
e

p

2
Z
0



2
GF Q
APV 
QW  F(Q , )

4 2
Neutral Weak Magnetism & Electricity
Probing the sea with PV ep scattering
GMs = 0.28 +/- 0.20
GEs = -0.006 +/- 0.016
~3% +/- 2.3% of proton
magnetic moment
~20% +/- 15% of
isoscalar magnetic moment
~0.2 +/- 0.5% of Electric
distribution
Preliminary
World Data
4/24/06
Consistent with s-quark
contributions to mP & JP
but smaller than early
theoretical expectations
Courtesy of Kent
Pashke (U Mass)
Probing Higher Twist with PV
Looking
PV
Deepbeyond
Ineslastic
theeD
parton
(J Lab
description
12 GeV)
~0.4%
Different
PDF fits
APV Q2
y

E=11 GeV
0
=12.5
Sacco, R-M
preliminary
Weak Interactions of Hadrons: Strange?
  p ,  n ,
E1 (PV)
i
M B B   
U   A  B  5 U F 
M B  M B 
Breaking of
SU(3) sym
M1 (PC)
Are weak interactions of
s-quarks a “un-natural”
2Re A B* ?
 Bare
 deeper
B  their
2
2
Or
A HWI
B
puzzles with the
involving all light flavors ?

 BB  ~ ms   ~ 0.15


p
~  0.76 0.08
  ~  0.63 0.09
0 0
Th’y
Exp’t
Weak Interactions of S=0 Hadrons:
Strange?
W  ,Z 0
q
W,Z ~ 0.002 fm  RCORE
q

Meson-exchange model

 , , 
N


N
Use parity-violation to filter
out EM & strong interactions

Seven PV mesonnucleon couplings
h1 , h0,1,2 , h0,1, h1 
Desplanques, Donoghue,
&Holstein (DDH)
Is the weak NN force short range ?
h ~ 10 g
133
, 
Cs , Anapole
moment

Boulder, atomic PV
N



h ~0
0  ,1
18
Long range: 
-exchange?


Ne
b
0 ,0
0  ,1

T=1 force

N
1 ,0



18
F
Analog
 2-body
matrix elements
Model
independent
Is the weak NN force short range ?
  , , 
N
N

• Problem with expt’s


• Problem with nuc th’y
• Problem with model
T=1 force
• No problem (1)
EFT
Hadronic PV: Effective Field Theory

PV Potential





Long Range


Medium Range
Short Range

h1NN
k1a
NN
1,2,3
s , t , t
h1NN
O(p-1)
O(p)
O(p)
O(p)







Hadronic PV: Few-Body Systems
Pionless theory
Ab initio few-body calcs
Done
mN  pp  1.22 AL (pp)
LANSCE, SNS
mN t   9.35AL (np  d )
mN  pn  1.6 AL (pp)  3.7 AL (p )  37 A (np  d )  2 P (np  d )
HARD*
mN t  0.4 AL (pp)  0.7 AL (p )  7 A (np  d )  P (np  d )
mN nn  1.6 AL (pp)  0.7 AL (p )  33.3 A (np  d ) 1.08 P (np  d ) 0.83

 pp  0s  1s  2s
6
nn  0s  1s  2s
6
 pn  0s  2 2s
6
d n 
dz
NIST,SNS
*HIGS
AL d  np
Hadronic PV: Few-Body Systems
Complete determination of PV NN &
NN interactions through O (p)
Attempt to understand
the i, h etc. from
QCD
Attempt to understand
nuclear PV observables
systematically
Are the PV LEC’s
“natural” from
QCD standpoint?
Does EFT power
counting work in nuclei ?
Implications for 0bb-decay
Hadronic PV & 0bb - decay
e
e

e

AZ,N 
u



AZ  2,N  2

M
W
W


d

u
d


e
e
Light M : 0bb-decay
 rate may
0 scale of
 yield

m e˜ 
u
e˜ 

How do we compute & separate
 exchange effects?
heavy particle
e
u

EFF
2
m
  Uek mk e2i

d
k
d
Hadronic PV & 0bb - decay
How do we compute & separate
heavy particle exchange effects?
e
 
u
d 
AZ,N
e
e
ee
u

u
 



AZ  2,Nd 2
e
M
W

d


e

u


4 quark operator,
as in hadronic PV


W
e˜ 

d

e
  0
e˜ 

d
u
d
u

• Determine VPV through O (p)
from PV low-energy few-body
studies where power counting
works


Hadronic PV as a probe
O ( p -1 )
e
• Re-analyze nuclear PV
observables using this VPV
O ( p)
e
e
e


e
•If successful,
we would have some
indication
that operator

 power


 

counting works in nuclei

N

N
N to 0bb-decay

• Apply
e

K  p2


N
K NN p1


N
N
K NNNN p 0

PV Correlations in Muon Decay & m
3/4
0
3/4
1
TWIST (TRIUMF)
PV Correlations in Muon Decay & m
Model Independent
Analysis
0
0
H
H


H
0

H0
Z,W


Prezeau, Kurylov 05



2005 Global fit: Gagliardi et al.



m
Erwin, Kile, Peng, R-M 06


MPs
constrained by m
Model Dependent Analysis

W




1,2

P
e
Also b-decay,
Higgs production
e

TWIST P

TWIST 

First row CKM
P



MWR (GeV)
PV as a Probe of New Symmetries
Electroweak
symmetry?
Unseen Forces:
Supersymmetry
breaking: Higgs ?
1.
2.
3.
4.
Unification & gravity
Weak scale stability

Origin of matter
Neutrinos

˜

˜0





Beyond the SM
e

˜

W

e

SM symmetry (broken)
Weak decays & new physics
R Parity Violation
R-M,
V Flavor-blind
dSu
VKurylov,
VSUSY-
d  u e e
ud
us
breaking

u c t Vcd

Vtd
M
s  u e e

b  u e e

e
W
O
˜


~ 0.001

SM
 12k ˜

12k

n  p e e e  O

e
b-decay
e˜
˜

0

e
k
W
R
SUSY




d





e
A(Z,N)

A(Z
1,N
1)
e


e
˜
q

˜


0  ˜ 
1j1

   
e  e 1j1 
˜0





 
e
e
˜



ub
 
Vcs Vcb s 
CKM
Unitarity
 
Vts Vtb b
CKM, (g-2),
MW, Mt ,…
b
F

F
APV
l2
G
 Vud 1 rb  r 
G
e
j
L

CKM unitarity ?

e d
M˜ L  Mq˜ L
Kurylov,
No
long-lived LSPNew
or SUSY
physics
DMR-M
SUSY
RPV

Weak decays & PV
b
F

F
G
 Vud 1 rb  r 
G
Ultra cold neutrons
58Ni
coated stainless guide
b-decay
n  p e e
A(Z,N)  A(Z 1,N 1) e   e
    0 e  e
Lifetime & correlations
Flapper valve
Liquid N2
pe  p
pe
dW 1  a
 An  
E e E
Ee
Be reflector
LHe
Solid D2
77 K poly

UCN Detector
Tungsten Target
LANSCE: UCN “A”
NIST, ILL:
tn
Future SNS: tn,
a,b,A,… Future LANSCE:
Correlations
Weak decays & PV
Vud

u c t Vcd

Vtd
d  u e e
s  u e e
b  u e e

e
˜




W
˜0





˜



d

e

u˜

SUSY
pe  p
pe
dW 1 a
 An  
E e E
Ee
e
˜0

u

O
 ~ 0.001
 OSM

Vus Vub d
 
Vcs Vcb s 
 
Vts Vtb b
˜



 
˜e


e
SUSY
Non (V-A) x (V-A)
interactions: me/E
b-decay at “RIAcino”?
Probing SUSY with PV eN Interactions
e




e
Z0


e , A
e , 
A
e

e




e , A
e , A

2
2
GF Q
APV 
QW  F(Q , )

4 2
“Weak Charge” ~ -N +Z(1- 4
~ 0.1 for e- , p
sin2 W )
2
g(

)
Y
sin 2 W 
g() 2  g()Y2
Weak Mixing Angle: Scale Dependence
Czarnecki, Marciano
Erler, Kurylov, MR-M
Atomic PV
N deep inelastic
sin2W
e+e- LEP, SLD
SLAC E158 (ee)
JLab Q-Weak (ep)
(GeV)
Probing SUSY with PV eN Interactions
e
Z

SUSY
dark matter

e

˜

0

Z0

˜  


 


f
SUSY loops



e˜ 
e
f
e



 e˜




f

f

0 ->
QuickTime™ and a TIFF (Uncompressed)
e+e decompressor are needed to see this picture.
 is Majorana
e
e
˜ Rk
e
RPV 95% CL fit to
12k decays, M ,etc.
12k
weak
W


Kurylov, Su, MR-M

Additional PV electron scattering ideas
Czarnecki, Marciano
Erler et al.
Atomic PV
Linear
Collider e-e-
N deep inelastic
DIS-Parity, JLab
sin2W
e+e- LEP, SLD
SLAC E158 (ee)
JLab Q-Weak (ep)
Moller, JLab
(GeV)
Probing SUSY with PV eN Interactions
Kurylov, R-M, Su
“DIS Parity”
SUSY loops
 SUSY
dark matter
E158 &QWeak
QWp,SUSYQuickTime™
QWp,SM and a TIFF (Uncompressed) decompressor are needed to see this picture.
Linear
collider
JLab Moller
RPV 95% CL
QWe,SUSY QWe, SM
Looking through the Mirror:
• The violation of parity invariance in low energy weak
interactions has provided key information about
the structure of the Standard Model
• PV is now a powerful tool for probing other aspects of
the symmetries of the Standard Model and beyond
• We can look forward to a rich array of PV studies in
nuclear, particle, and atomic physics in the next
quarter century
The mirror will undoubtedly appear
quite different when PV reaches 75