Nuclear Science & the New Standard Model: Neutrinos

Download Report

Transcript Nuclear Science & the New Standard Model: Neutrinos

Nuclear Science & the New Standard Model:
Neutrinos & Fundamental Symmetries in the Next Decade
The
Nuclear
next physics
decade studies
presents
ofNP
ns &
with a
unique
fundamental
opportunity
symmetries
to buildplayed
on thisan
legacy
essential
in developing
role in developing
the “new
&
Standard
confirming
Model”
the Standard Model
Fifty years
of PV in
nuclear
physics
The
Our value
role has
of our
been
contribution
broadly will be
broadly
recognized
recognized
within and
outside
beyond
the NP
field
Michael Ramsey-Musolf, INPC 2007
Qu i c k T i m e ™ a n d a
T I F F (Un c o m p re s s e d ) d e c o m p re s s o r
a re n e e d e d to s e e th i s p i c t u re .
Solar ns &
the neutrino
revolution
Fundamental Symmetries & Cosmic History
Electroweak symmetry
breaking: Higgs ?
Beyond the SM
SM symmetry (broken)
Fundamental Symmetries & Cosmic History
It utilizes a simple and elegant
symmetry principle
SU(3)c x SU(2)L x U(1)Y
to explain the microphysics of
the present universe
• Big Bang Nucleosynthesis
(BBN) & light element
abundances
• Weak interactions in stars
& solar burning
•Standard
Supernovae
& neutron
Model
puzzles
stars
Standard Model successes
Fundamental Symmetries & Cosmic History
Electroweak
symmetry
Puzzles the Standard
Model
can’t solve
breaking: Higgs ?
1.
2.
3.
4.
Origin of matter
Unification & gravity
Weak scale stability
Neutrinos
What are the symmetries
(forces) of the early
universe beyond those of
the SM?
• Supersymmetry ?
• New gauge interactions?
• Extra dimensions ?
Beyond the SM
SM symmetry (broken)
Opportunity: Unique role for low energy studies in
the LHC era (and beyond!)
Two frontiers in the search for new physics
Collider experiments
(pp, e+e-, etc) at higher
energies (E >> MZ)
Large Hadron Collider
Indirect searches at
lower energies (E < MZ)
but high precision
Ultra cold neutrons
CERN
High energy
physics
Particle, nuclear
& atomic physics
Primary Scientific Questions
•
What are the masses of neutrinos and how have
they shaped the evolution of the universe? 0nbb
decay, q13, b decay,…
•
Why is there more matter than antimatter in the
present universe? EDM, DM, LFV, 0nbb, q13 …
•
What are the unseen forces that disappeared
from view as the universe cooled? Weak decays,
PVES, gm-2,…
Tribble report
Specific Opportunities
•
•
•
Major Discovery Potential:
0nbb-decay & EDM
Precision measurements
Neutrino mixing & hierarchy
Weak decays, PVES, gm-2
Electroweak probes of QCD
PVES, Hadronic PV, nN scatt…
The Origin of Matter & Energy
Electroweak symmetry
breaking: Higgs ?
Leptogenesis: discover
the ingredients: LN- & CPviolation in neutrinos
Weak scale
baryogenesis: test
experimentally: EDMs
Baryogenesis: When?
CPV? SUSY? Neutrinos?
?
Nuclear Science mission: explain
the origin, evolution,
& structure
of SM symmetry (broken)
Beyond the
SM
Cosmic Energy Budget
the baryonic component
Baryogenesis: Ingredients
Present universe
Early universe
Sakharov Criteria
• B violation
• C & CP violation
 Y1

• Nonequilibrium
dynamics
Sakharov, 1967
 1
L


 1
S
?
?
log10 (m / m0 )
Weak scale
Planck scale
Leptogenesis
Early universe
Present universe
Key Ingredients
• Heavy nR
Out of equilibrium decays
 Y1
• mnspectrum

• CP violation
Particle-Antiparticle asym
• L violation
L violation
Leptogenesis
B violation
 1
S
0nbb-decay,, bdecay, q13 ,…

Weak scale
log10 (m / m0 )
Planck scale
0nbb-Decay: LNV? Mass Term?
Dirac
Majorana
b-decay
Long baseline
Theory Challenge:
matrix


e
e
elements+ mechanism
?
1000
EFF
mW
n 
De ge ne rate
Effective bb Mass (meV)
100

Inve r te d
 u
Nor m al
m
Ue1 = 0.866
1
Ue2 = 0.5
m
2
2
atm
s ol
2
= 70 meV
= 2000 meV
Ue3 = 0


2
0.1
2
1
?
3
4
5 6 7
2
3
4
5 6 7
10
100
Minimum Neutrino Mass (meV)
2
3
4
5 6 7
1000


nM
W

W
k
e

AZ,N
d 



2

e
10

n MUek mk e2i
W
u

u

d


e
e˜

 

e
0

e˜ 

u
AdZ  2,N  2
d


0nbb:Mechanism & mn
l111/ ~ 0.06 for mSUSY ~ 1 TeV
1000
0nbbsignal equivalent to
De ge ne rate
100
Effective bb Mass (meV)
degenerate hierarchy
10
Nor m al
m
Ue1 = 0.866
1
Loop contribution to mn of
inverted hierarchy scale
Impt to know if
RPV interactions
exist and, if so,
what magnitude
Inve r te d
Ue2 = 0.5
m
2
2
atm
s ol
= 70 meV
= 2000 meV
2
2
Ue3 = 0
0.1
2
1
3
4
5 6 7
2
3
4
5 6 7
10
100
Minimum Neutrino Mass (meV)
2
3
4
5 6 7
1000

Lepton Flavor & Number Violation
e
m
Present universe

Early universe
 Y1


MEG: Bm!e ~ 5 x
e
 m
AZ,N 
R=
10-14

AZ,N 
Mu2e: Bm!e ~ 5 x 10-17
Also PRIME
Bm!e
 1
L


Bm!e
 1
S
?
?
log10 (m / m0 )
Weak scale
Planck scale
Lepton Flavor & Number Violation
0nbbdecay
m
e


u



u
d
MEG:
LightBnmM
~ 5 x 10-14?
!eexchange
m

W

d
e
e

nM
u W

 

Raidal, Santamaria;
Cirigliano, Kurylov, RM, Vogel
LFV Probes of RPV: m!e
e
AZ,N 

e˜



d
e
e



lk11/ ~ 0.008
0.09 for
formm
TeV
SUSY
SUSY~~11TeV
e˜ 
e
u
AZ,N 
d


Heavy particle exchange
?
-17
Mu2e:
B
~
5
x
10
m!e 


˜
n
m
0


m
e
e
e




e
e
 * 
Logarithmic enhancements of R

Low scale LFV: R ~ O(1)

 * 


GUT scale LFV: R ~ O
Baryogenesis: New Electroweak Physics
90’s:
Weak Scale Baryogenesis
• B violation
Cohen, Kaplan, Nelson
Joyce, Prokopec, Turok
Unbroken phase
Topological transitions
new
• C & CP violation
• Nonequilibrium
dynamics
(x)
Broken phase

1st order phase 
transition
CP Violation
Sakharov, 1967
new
• Is it viable?
• Can experiment constrain it?
• How reliably can we compute it?

new


new
e


EDM Probes of New CP Violation
CKM
f
dSM

e
n
199
Hg
m
dexp
Yale, Indiana,
Amherst 27
40
 10
 1.6 10
SNS,
1030ILL, PSI 3.0 1026
 1033
 2.11028
ANL, Princeton,
TRIUMF, KVI…
 1028
 1.11018
Also 225Ra, 129Xe, d
dfuture
 1031
 1029
 1032
 1024
BNL
If new EWK CP violation is responsible for abundance
of matter, will these experiments see an EDM?
EDMs: New CPV?
f˜
Electron

˜0

f˜



Improvements
of 102 to 103
f


f˜

˜0

Neutron


˜0

f˜



g
p

q˜

f


q˜
q
QCD

 

q˜
˜

0
N
e

g
q˜


q


˜


 





q˜
0


QCD
 
Deuteron
n
 

Neutral
Atoms


g
q˜
q


QCD


Baryogenesis: EDMs & Colliders
Theory progress &
challenge: refined
computations of baryon
asymmetry & EDMs
baryogenesis
LHC reach
LEP II excl
Present de
ILC reach
dn similar
Prospective de
Precision Probes of New Symmetries
Electroweak symmetry
New Symmetries
breaking: Higgs ?
1.
2.
3.
4.
Origin of Matter
Unification & gravity
Weak scale stability 
Neutrinos
? 
nm
ne
˜m
n
W
˜0

m

˜
m



e

QuickT ime™ and a
T IFF (Uncompressed) decompressor
are needed to see this picture.
QuickTime™ and a
TIFF(Uncompressed) decompressor
are needed to see this picture.
Qu ickT ime ™ a nd a
TIF F (U nco mpre sse d) de com pres sor
are nee ded to s ee th is pi cture .
Quic kTime™ and a
TIFF (Uncompres sed) dec ompressor
ar e needed to see this picture.
Beyond the SM
Qui ckT ime™ and a
T IFF (Uncompressed) decompressor
are needed to see this picture.
SM symmetry (broken)
Precision Neutrino Property Studies
Daya Bay
T2K
Double Chooz
Mixing, hierarchy, & CPV
U e1 U e2 U e 3 


U  U m1 U m 2 U m 3 


U1 U 2 U 3 
1
0
0   cosq13
0 ei CP sin q13  cosq12 sin q12 0 1 0
0

 


  i / 2
 0 cosq 23 sin q23  
0
1
0
0
 sin q12 cosq12 0 0 e

  i CP

 
i / 2ib

cosq13   0
0
1 0 0 e
0 sin q 23 cosq 23  e sin q13 0





Long baseline
oscillation studies:

CPV?
Normal or Inverted ?
Mini Boone
Precision Neutrino Property Studies
High energy solar ns
Solar Neutrinos
DM +
EWB
Ice Cube
EM vs. nluminosity: MNSP
KamLAND
Borexino
unitarity?
Solar model?
CLEAN
LENS
Neutrino Mass & Magnetic Moments
How large is mn ?
Experiment: mn < (10-10 - 10-12) mB
e scattering, astro limits
Radiatively-induced mn
Bell, Cirigliano,
Gorshteyn,R-M,
Vogel, Wang, Wise
Davidson, Gorbahn,
Santamaria
Both operators chiral odd
mn < 10-14 mB
Dirac
mnem < 10-9-10-12 mB Majorana
Weak decays & new physics
SUSYCorrelations
models
b-decay
Vud

u c t Vcd

Vtd
d  u e ne
n  p e ne


s

u
e
nee  n
A(Z,N)  A(Z 1,N 1)

u
e
ne
    0 eb n
e
nm

O
G
 ~ 0.001
 Vud 1 r
SM m 
b Or
G
˜m
b n
˜0 F


m m
˜

m F


u˜


d
W

SUSY
CKM, (g-2)m,
MW, Mpt
pe pMn
M
dW 1 a m˜ L q˜L An 
E e En
e
Ee

e
˜0

u


ne
e
Vus Vub d
 
Vcs Vcb s 
 
Vts Vtb b
ne

˜e
n
physics
New
˜




e
 
SUSY
(V-A)
x probes
(V-A) of
Similarly
unique
VNon
from
neutron
ud
interactions:
me/E
new
physics in muon
and
decay:
ILL, LANSCE,
pion decay
SNS, NISTTRIUMF &RIA?
PSI
SNS, NIST, LANSCE,
Correlations in Muon Decay & mn
Model Independent
Analysis
0
0
H
H
n

H
0

Z,W
n

Prezeau, Kurylov 05



2005 Global fit: Gagliardi et al.
n
H0
n
n

e

Erwin, Kile, Peng, R-M 06
Constraints
on non-SM




e
mn
Higgs production at ILC: MPs
constrained by mn
Model Dependent Analysis
nm
W

m


1,2

mn , m and bdecay corr
Pm
ne
Also b-decay,
Higgs production
e

TWIST Pm

TWIST 

First row CKM
Pm



MWR (GeV)
Weak Mixing in the Standard Model
e
Parity-violating electron scattering
SLAC Moller



e
Z0

e , p

e , p


e

e , p
e

e , p


JLab Future
Z0 pole tension
Scale-dependence of Weak Mixing
Probing SUSY with PV Electron Scattering
RPV:
No SUSY DM
Majorana n s
12 GeV
QWP, SUSY / QWP, SM
SUSY Loops
Q-Weak (ep)
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
6 GeV
e
Z


e


˜

0
E158 ˜



f


Z
gm-2




(ee)
Moller
QWe, SUSY / QWe, SM
e˜ 
e
f
e

0

 e˜






f

f
Muon Anomalous Magnetic Moment
m

QED
m
Z
Future goal

~ 3.4 !
Weak
Had
VP
Had
LbL
SM Loops
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
SUSY Loops
Quic kTime™ and a
TIFF ( LZW) dec ompres sor
are needed to s ee this pic ture.
Uncovering
New Standard
Model !
Critical
role for thethe
international
NP community
0nbb:
Cuore
Majorana
Moon
GERDA…
New Forces?
Baryon
asymmetry?
Lepton Number
Violation ?
What is the New
Standard Model ?
Precision:
Muon g-2
PVES
b,m decay
Supersymmetry ?
Extra Dimensions ?
Weak Scale
CP- Violation ?
Neutrinos:
bdecay
Reactor n’s
nmag mom
Neutrino Mass ?
Mixing ?
Sterile n’s ?
EDM:
nEDM
atomic
dEDM
Baryon
asymmetry?
Back Matter
Neutrino Mass & Magnetic Moments
Majorana vs Dirac mn ?
Effective theory for E < L
Dirac:
Majorana:
Flavor Sym
Flavor
Antisym
Neutrino Mass & Magnetic Moments
Majorana vs Dirac mn ?
Naturalness bounds on CW,B
Dirac:
Anom Dim
Majorana:
7D mixing
5D matching
Antisym in Yukawas