מצגת של PowerPoint

Download Report

Transcript מצגת של PowerPoint

המופמילו הימקיול םידליב ביני קחצי

היגולוקנואו היגולוטמהל הקלחמה להנמ םידלי

.

רד

לארשיב םידלי תאופרל רדיינש זכרמ

Pediatric Hematology Oncology, Schneider Children’s Medical Center of Israel, Petal-Tikva, Sackler School of Medicine, Tel Aviv University, Israel.

Childhood malignancy

Cancer Cell, 2002

Childhood leukemia

97% Acute leukemia 75% Acute lymphoblastic leukemia 20% Acute myeloblastic leukemia Acute mixed lineage leukemia Acute undifferentiated leukemia

3% Chronic leukemia Chronic myelocytic leukemia Juvenile myelomonocytic leukemia

Risk Factors for Childhood Acute Leukemia Genetic Down NF1 Bloom Schwachman Ataxia Telangiectasia Fanconi Anemia Environmental Kostmann Granulocytopenia Ionizing Radiation In Utero X-ray Benzene Pesticide Alkylating /Topo-II Inhib.

In Utero Topo II Inhib. DNA damaging Higher incidence among identical twins ALL, AML ALL, AML, JMML ALL, AML ALL, AML ALL AML AML ALL, AML ALL AML AML AML Infant Und L.

ALL- Epidemiology

 The most common malignancy in childhood   Incidence 3-4 cases per 100000 children Peak incidence between 2-5 y   Boys > Girls White >Black  Genetic predisposition <5%

Age distribution

Clinical Features at Diagnosis in Children with Acute Lymphoblastic Leukemia Clinical features/ Symptoms Fever Bleeding (petechiae or purpura) Bone pain Lymphadenopathy Splenomegaly Hepatosplenomegaly 48 % of patients 61 23 50 63 68

Laboratory Features at Diagnosis in Children with Acute Lymphoblastic Leukemia Laboratory features Leukocyte count (mm3) <10,000 10,000-49,000 >50,000 Hemoglobin (g/dl) <7.0

7.0-11.0

>11.0

Platelet count (mm3) <20,000 20,000-99,000 >100,000 % of patients 53 30 17 43 45 12 28 47 25

ALL testicular involvement

CNS leukemia

Differential Diagnosis in Childhood Acute Lymphoblastic Leukemia Nonmalignant conditions Juvenile rheumatoid arthritis Infectious mononucleosis Idiopathic thrombocytopenic purpura Pertussis; parapertussis Aplastic anemia Acute infectious lymphocytosis Malignancies Neuroblastoma Retinoblastoma Rhabdomyosarcoma Unusual presentations Hypereosinophilic syndrome

Diagnosis

Blood count and smear

Bone marrow:

Morphology Cytochemical stains Immunophenotype Cytogenetics

Haemopoiesis

FAB L

1

FAB L

2

FAB L

3

Cytochemical stains

Lymphoid differentiation

T phenotype ALL

 Incidence 15% (Israel – 20 %)  Median age : 12y  Male > Female  High blood count  Mediastinal mass  Organomegaly  CR < 90 %  High relapse rate, CNS, Extra medullary

15 ליג ינפל ALL חתפמ םידלי 2000 ךותמ דחא םחרב הרוק ןושארה עוראה םבורב םהמ דחא זוחא קר ךא 12 ;2 1 היצקולסנרט אשןנ 1/100 הימקיול חתפי רושק תויהל לוכי הזו עיפות הימקיולהש ידכ ףסונ עורא שורד יבגל םייקה יטנגה הנבמב םגו םוהיזל הבוגתב וא םוהיזב DNA יקזנ ןוקיתו תופורת לש םזילובטמ • • • •

Genetic (somatic) Abnormalities in Childhood Cancer Numerical Chromosomal changes Structural Chromosomal changes Translocation Inversion Deletion Addition / duplication Amplification

G-banding Childhood ALL Hyperdiploid FISH cep4 / cep10 Cep4: centromere 4 Cep10: centromere 10

Ca-Cytogenet. -SCMCI

Genetic (somatic) Abnormalities in Childhood Cancer Numerical Chromosomal changes Structural Chromosomal changes Translocation Inversion Deletion Addition / duplication Amplification

Genetic Abnormalities in Childhood Cancer Protooncogen Activation Suppressor gene Inactivation Altered function of: Growth factors Growth factor receptors Kinase inhibitors Signal transducers Transcription factors Altered down stream Genes Expression

G-banding Childhood ALL Philadelphia chromosome FISH bcr / abl bcr: 22q11 abl: 9q34 46,XY,t(9;22)(q34;q11)

Ca-Cytogenet. -SCMCI

ALL-B lineage Chromosomal rearrangement Activation of transcriptional control Genes ALL Early B Pre. B Pro. B Translocation t(12;21)(p12;q22) t(1;19) (q23;p13) t(17;19)(q22;p13) t(4;11) (q21;q23) B cell/Burkitt B cell t(8;14) (q24;q32) t(2;8) (p12;q24) t(8;22) (q24;q11) t(3;11) (q27;q23) Genes TEL-AML1 E2A-PBX1 E2A-HLF MLL-AF4 MYC (IgH) MYC (IgL) MYC (IgL) BCL6 Frequency 25% 5% <1% 4% 5% <1% <1% 1%

G-band Childhood ALL – t(12;21) (TEL/AML1),del(12p) FISH SKY

Ca-Cytogenet. -SCMCI

46,XY, t(12;21)(p13;q22),der(12)t(1;12p)

H.M.

Expression profiles of diagnostic bone marrow ALL blasts Yeon, Cancer Cel 2002

Molecular subtypes of ALL Cancer Cell, 2002

Childhood ALL, Event Free Survival by Genetic Features St Jude Pui, NEJM, 1998

Prognostic Risk Factors in ALL Age: WBC: Phenotype.: 1-6, 1-10y 20.000, 50.000

T, “B”, CALLA neg.

Ploidy: <2n, 3n Cytogenetic: t(9;22),t(4;11) t(12;21) Gene Expression Profile ?

Early response to treatment !!!!!!

PB D8, BM D15, D33 Morphology, MRD Sex, Race, CNS, Testicular involvement

Early response to therapy

D-8 ( PB ; BM )

D- 14 ( BM )

D- 33 ( BM )

MRD Slop by BM aberrant phenotype BM clonal Ig/TCR rearrangement

M R D Minimal Residual Disease

Precise definition of remission

Prognostic significance (blast <0.01% )

Treatment modification

Immunogobuline gene rearrangement van Dongen ASH 2002

. therapy antileukemic Patterns of early cellular responses to

Pui, 2000

International BFM Study Group

Risk MRD 5 year Relapse TP1 TP2 Rate - % Low Intermediate High <10 -4 <10 -4 >10 -3 10 -3 2 24 84

Combined Information of MRD from Time Points 1+2 1.0

0.8

0.6

Low risk group (n=55) neg at tp 1 Intermediate risk group (n=55) < 10e-3 at tp 2 0.4

0.2

High risk group (n=19) ≥ 10e-3 at tp 2 0.0

0 1 2 3 4 5 years from time point 2 6 Low risk group pRFS = 0.98 ± 0.02

Intermediate risk group pRFS = 0.76 ± 0.06

High risk group pRFS = 0.16 ± 0.08

7 p<0.001

8 9

Principles of treatment

Risk group

Combination chemotherapy : Remission induction CNS prevention

Consolidation Maintenance

Irradiation

BMT

Late effect consideration

Leukemic cell kinetics

Event- Free Survival of ALL children- St. Jude Pui, 1998 NEJM

CHILDHOOD-ALL 1.0

.9

.8

.7

.6

.5

.4

.3

.2

.1

0.0

0 ISRAEL NATIONAL STUDIES. EFS 2 4 6 8 10 12 14 16 18 INS-98 INS-89 INS-84 Years Aug 2002

CHILDHOOD ALL-INS 89 1.0

.9

.8

.7

.6

.5

.4

.3

.2

.1

.0

0 EFS by RISK-GROUPS 2 4 6 8 10 12 14 16 Years Aug 2002 Non-HRG: 79% (N=259) HRG: 33% (N=43)

Host Pharmacogenetics Affects Treatment Response excessive toxicity non responders responders

Determinants of Treatment Response in Leukemia Host Age Pharmacogenomics Leukemia Tumor burden Growth potential Drug resistance Therapy Drug dosage Drug interactions Treatment response

Impact of Pharmacogenomics on Treatment Response Same treatment to all patients + Benefit + Toxicity Optimize treatment with individualized dose + Benefit + No Toxicity No Benefit + Toxicity Treat with alternative drug No Benefit No Toxicity

BMT – (BFM-95)

t ( 9 ; 22 ) or BCR /ABL recombination

t ( 4 ; 11 ) or MLL / AF4 recombination

No CR D – 33

PPR + T immunophenotype pre B immunology WBC > 100000

תיביסנטניא היפרתומכו .

מ .

ע .

מל הנירק לש םירחואמ םיכוביס הנירק תולקלאמ תופורת .

םיניסקוטוליפודופיפא םינילקיצהרטנא םינילקיצהרטנא םידיאוקיטרוקוקולג , תאסקרטוטמ , הנירק םידיאוקיטרוקוקולג , הנירק הנירק םיטילובטמיטנא , דיאוקיטרוקוקולג , הנירק דיאוקיטרוקוקולג םיינשמ חמ ילודג תינשמ הימקואל היתפוימוידרק היתפולפצנא הכומנ המוק הנמשה סיזורופואטסוא תומצעל ירלוקסווא קמנ Relapse remains the major problem of childhood leukemia!!

Cancer Cell, 2002

Science, 1997

AML-M2, t(8;21) NEJM, 1999

G-banding AML FISH Eto: 8q22 AML1: 21q22

Ca-Cytogenet. -SCMCI

AM-M3, Hypergranular, t(15;17) Bennet, leukemia 2000

AML-MRC-10. Overall Survival by Cytogenetic abnormalities Grimwade, Blood, 1998

AML-MRC-10. Overall Survival by Cytogenetic abnormalities Grimwade, Blood, 1998

Cancer Cell, 2002

Lymphomas

Classification along three axes 

Classification by cell of origin (B vs. T vs. NK)

 Classification by grade – Low grade, intermediate grade, high-grade  Hodgkin disease (HD) vs. Non-Hodgkin Lymphoma (NHL)

Lymphoma

• Malignancies of the lymphoid system • Classification by cell of origin (B vs. T) •

Classification by grade – Low/intermediate/high In children – only high-grade lymphomas

• Hodgkin disease (HD) vs. Non-Hodgkin Lymphoma (NHL)

Pediatric lymphomas

Non-Hodgkin Lymphoma in Children • B-Cell – Burkitt’s lymphoma (40%) Diffuse large B-cell (DLBCL) (20%) B-cell lymphoblastic lymphoma (5%) • T-Cell – Lymphoblastic Lymphoma (25%) • Anaplastic Large Cell Lymphoma (ALCL) (10%)

Burkitt’s lymphoma

Burkitt’s lymphoma - Pathogenesis • The B-Lymphocyte is produced in the bone marrow • It differentiates into an antibody producing cell (Immunoglobulin-Ig) • It can be found in all lymph nodes and extra-nodal organs • Burkitt’s lymphoma and DLBCL are thought to arise in germinal centers of lymph nodes during B-cell development

The normal lymph node

Malignancies of B-lymphocytes

Burkitt’s lymphoma - Pathogenesis • Cell of origin – B-cell centroblast (relatively mature B cell) • t(8;14) – C-MYC • Role of EBV • African (Endemic) vs. Sporadic form

Burkitt’s lymphoma - Pathogenesis • Cytogenetics t(8;14), t(2;8), t(22;8) • Common theme – Chr. 8 – C-MYC - a cellular oncogene • Partners – Immunoglobulin regulatory regions

Burkitt’s lymphoma - Pathogenesis Chromosome 8 Regulator C-MYC ¥ ▅ _ ▅ _ ▅ ____ ▅ __ ▅ __ Chromosome 14 Regulator Ig ¥ ▅ _ ▅ _ ▅ ____ ▅ __ ▅ __

Burkitt’s lymphoma - Pathogenesis C-MYC Regulator Ig Chromosome 8;14 ▅ _ ▅ _ ▅ ____ ▅ __ ▅ __ Ig Regulator C-MYC Chromosome 14;8 ▅ _ ▅ _ ▅ ____ ▅ __ ▅ __

Burkitt’s lymphoma - Pathogenesis • The regulatory region of the Ig gene, which is usually very active in B-Cells, now drives the expression of C-MYC • C-MYC is an oncogene – the cell enters the cell cycle and divides • The result – the B-cell is driven to proliferate

Burkitt’s lymphoma - Pathogenesis Burkitt’s Lymphoma is the tumor with the greatest proliferative capacity with a doubling time of 24-48 hours.

The role of EBV in Burkitt’s lymphoma • EBV – a DNA herpesvirus • The cause of infectious mononucleosis – a self limiting infection of B-cells • The genome of EBV can be found in Burkitt’s lymphoma cells: 100% of cases of African Burkitt’s, ~50% of cases in Latin America, and only in 20% of cases in the west.

• Its exact role in lymphomagenesis is unclear

The role of EBV in Burkitt’s lymphoma • In normal hosts - EBV causes a transient lymphoproliferation that is controlled by the immune system • In the immunocompromised host – EBV can cause a lymphoproliferative state than can be polycolonal or monoclonal (PTLD) • Immunodeficiency or chronic infection (malaria) allows continuous proliferation of EBV-infected B-cells that may be the reservoir of cells vulnerable to malignant transformation

Burkitt’s Lymphoma – Clinical Features • Commonest location – abdomen – Localized (ileocecal intussusception) - Disseminated mesenteric, peritoneal - Renal involvement • Head and neck – pharynx, Waldeyer ring, paranasal sinuses, tonsils, gums • Epidural, ovary, bone • African form – Jaw tumors • Spread to extra lymphatic organs – CNS, BM (20%) • Rapid growth – metabolic derangements

Burkitt’s - Diagnostic Evaluation

• Diagnostic biopsy - lymph node - abdominal mass - bone marrow (stage 4 - B-cell leukemia) - intestinal resection (intussusception)

Burkitt’s lymphoma - Pathology • Rapidly proliferating B-Cells (MIB1) • Starry sky appearance (macrophages) • Subtypes – Burkitt’s, Burkitt-like, (DLBCL)

Burkitt’s lymphoma Pathology

Burkitt’s- Diagnostic Evaluation • Clinical extent • Lab- CBC, Uric acid, LDH, P, Ca, K, renal function • Imaging – CT • Radionucleide scan – Gallium, PET • Bone marrow, CNS involvement • Pre-treatment - Echo,Fertility preservation

Burkitt’s Lymphoma - Staging St. Jude/NCI system • Stage I – One nodal group- resected • Stage II – Localized disease (AR) (Intussusception) • Stage III – Extensive abdominal or mediastinal disease, epidural • Stage IV – Extra nodal disease – CNS, Bone marrow (BM - Burkitt’s (B-cell) leukemia) Most patients present with advanced disease (Stages III, IV)

Burkitt’s Lymphoma - Staging LMB (FAB – International) System • Group 1 – One nodal group- resected • Group 2 – Extensive localized disease - abdominal or mediastinal, epidural, high LDH • Group 3 – Extra nodal disease – CNS, Bone marrow (BM - Burkitt’s (B-cell) leukemia)

Burkitt’s lymphoma - Treatment  Metabolic stabilization – Tumor lysis syndrome (TLS)  Stage (Group) dependent  Chemotherapy  Intensive, short duration therapy  Minimal (if any) role for radiation therapy  Surgery – localized abdominal disease (intussusception)  High cure rate in newly diagnosed patients  Relapse is rarely curable

Tumor Lysis Syndrome • Rapid proliferation and death of cells • Tumor cells outstrip their own blood supply and die • Breakdown of nucleic acids – DNA – uric acid, phosphate • Spontaneous cell death → Severe TLS can occur before treatment

Tumor Lysis Syndrome Diseases with rapid cellular turnover • Lymphomas – Burkitt’s, lymphoblastic • Leukemias – ALL, AML • Solid tumors – less common – NB, RMS

Burkitt’s lymphoma - Chemotherapy • Begin after metabolic stabilization • Active agents– Cyclophosphamide, HD MTX, HD ARA C, vincristine, doxorubicin, steroids, ifosfamide, VP-16, • CNS directed therapy – intrathecal (XRT unnecessary) •

Greatest dose-intensity possible

cycles) (minimal interval between

Burkitt’s Lymphoma – Treatment The LMB approach Reduction phase Vincristine Cyclophosphamide –– Total 5.5 grams/M2 Doxorubicin –– Total 180 mg/M2 MTX -– Total 15 gram/M2 Prednisone ARA-C VP-16

Burkitt’s lymphoma - Outcome • Modern therapy is highly effective.

Most patients are cured: 95% group B, 80% Group C.

Period of risk for relapse is short – 9-12 months • Acute toxicity is substantial – Infections, mucositis, acute mortality ~ 1-3%.

• Long term toxicity– mainly gonadal (cardiac) Reduction in therapy?

Results of LMB-89 trial for Pediatric B-cell NHL Patte C et al Blood 2001:97, 3370-9

B-NHL - Outcome by group

B-NHL - Outcome by stage

Outcome in group C – Importance of CNS disease

Gonadal Toxicity • Mainly caused by alkylating agents Cyclophosphamide, ifosfamide, busulfan, procarbazine • Damage to gonads is related to cumulative dose • Cyclophosphamide >6 grams is toxic

Burkitt’s lymphoma – Challenges • Preserve cure rates while reducing acute and long term toxicity • Treatment of relapse

Relapsed Burkitt’s Lymphoma • Relapse Burkitt’s lymphoma is currently incurable in the overwhelming majority of patients • Targeted therapy Anti CD - 20 (rituximab) Ibritumomab-tiuxetan Y 90 Anti CD22 – Epratuzumab hLL2-DOTA- Y 90 Anti CD52 – Campath-1H, Alemtuzumab • Allo-BMT