迴歸分析

Download Report

Transcript 迴歸分析

迴歸分析
大綱



簡單線性迴歸 (1x1Y)
多元迴歸 (多x1Y)
含類別變數的迴歸(某些x為分類變數)
簡單線性迴歸

主要用於檢定單一的自變數對一個依變數是否
具影響力或預測力
供給量
市場價格
假設的寫法可寫成:
•供給量會顯著影響市場價格。
•供給量對市場價格具有預測力。
•供給量對市場價格具顯著的負向影響。
•供給量越大相對市場價格越低。

簡單線性迴歸模型必須滿足下面的假設
1.
2.
3.
4.
5.
常態性假設
變異數齊一性假設
所有的x值所對應y的分配,其平均數均落母體迴
歸線上。
不同x下的y彼此獨立。
誤差遵循常態分配彼此獨立且期望值為0。
上機:〔主要分析檔〕
人格特質
積極
低焦慮
高自尊
消極
沮喪
他人導向
網路成癮
假設:
H1:人格特質會影響網路成癮。
H1-1:積極人格特質對網路成癮具負向影響。
H1-2:低焦慮人格特質對網路成癮具負向影響。
H1-3:高自尊人格特質對網路成癮具負向影響。
H1-4:消極人格特質對網路成癮具正向影響。
H1-5:沮喪人格特質對網路成癮具正向影響。
H1-6:他人導向人格特質對網路成癮具正向影響。
報表整理
依變數
解釋變數
係數
R平方
網路成癮
積極
低焦慮
-.279*** -.262***
.078
.069
註:***表p<0.001
高自尊
-.130
.017
消極
沮喪
.439*** .155***
.192
.207
他人導向
.360***
.130

問題:是否需要將積極、低焦慮、高自尊、消
極、沮喪以及他人導向加總起來當作人格特質
變數,即:人格特質=積極+低焦慮+高自尊+
消極+沮喪+他人導向。再檢定人格特質對網路
成癮是否具影響力?
多元迴歸

多元迴歸主要用在探討一組自變數對一個依變
數是否具影響力或預測力
樓層
地坪
房價
屋齡
停車位數
假設的寫法:
樓層、地坪、屋齡與與停車位數可共同預測房價



多元迴歸的主要目的是為了強化簡單線性迴歸
對依變數的預測力或解釋力
多元迴歸主要的目的在驗證一群解釋變數對依
變數是否具影響力,並判定個別變數對依變數
是否有影響力
多元迴歸的基本假設,除了必須滿足簡單線性
迴歸的基本假設外,還多了一個假設:自變數
與自變數間必須為獨立變數 (很難辦到)


多元迴歸方程中有任兩個自變數發生共線性的
話,會發生不可預期的錯誤
檢查多元共線性大致有四種方式




利用相關係數(目視法)
利用允差
利用變異膨脹因子(VIF)
利用特徵值

大部分情況,管理類的研究,多元迴歸的檢定
流程如下圖所示
變異數分析表
總檢定
不顯著
停止
顯著
判別係數
個別變數檢定
共線性診斷
顯著或不顯著
結論
上機〔主要分析檔〕
瀏覽查詢
電子郵件
聊天
網路成癮
下載
電腦遊戲
假設:瀏覽查詢、電子郵件、聊天、下載、電腦
遊戲可共同預測網路成癮
報表整理
變數
瀏覽查詢
電子郵件
聊天
下載
網路成癮
係數
VIF
.052
.018
.207**
-.147*
1.630
1.427
1.504
1.451
電腦遊戲
.599***
1.268
F=24.237***, R2  .400
註:*表p<0.05,**表p<0.01,***表p<0.001
含類別變數的迴歸



類別變數本身可作為解釋變數(IV)也可以當成
控制變數 (CV)
當解釋變數的時候,建議以一般線性模式的方
式處理
如果當控制變數的時候使用迴歸或者一般線性
模式皆可
虛擬變數的設定






名義量尺本身並沒有數值上的意義
類別變數只有「是」與「不是」兩種情況
對於類別變數而言,只有0與1
把數值區分成「是」與「不是」的過程稱為虛
擬化
一般而言名義量尺若有k個分類,那麼必須設
立k-1個虛擬變數
若有兩個以上的名義量尺,需設立多少個虛擬
變數得看研究設計

一個類別變數
D1 D2 D3
春 1
0
0
夏 0
1
0
秋 0
0
1
東
0
0
0

兩個類別變數

情況I
D1 D2 D3
春 1
0
0
夏 0
1
0
秋 0
0
1
東
0
0
0
D4
男 1
女 0

情況II
D1 D2 D3 D4 D5 D6 D7
男春 1
0
0
0
0
0
0
男夏
男秋
男東
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
女春
女夏
0
0
0
0
0
0
0
0
1
0
0
1
0
0
女秋
女東
0
0
0
0
0
0
0
0
0
0
0
0
1
0
上機〔主要分析檔〕
休
D1
休
D2
休
D3
休
D4
教
D1
教
D2
教
D3
教
D4
室內活
動(1)
1
0
0
0
社交活
動(2)
0
1
0
文化活
動(3)
0
0
戶外活
動(4)
0
體能活
動(5)
0
姓
D
國小
以下(1)
1
0
0
0
男(1)
1
0
國中(2)
0
1
0
0
女(2)
0
1
0
高中(3)
0
0
1
0
0
0
1
大專
(學)(4)
0
0
0
1
0
0
0
研究所
以上(5)
0
0
0
0
類別變數當控制變數

控制變數



在驗證x、y的關係時,為了純化兩者之間的關係,
把其他對依變數y有影響的自變數將它的解釋變異
排除,這些被排解釋變異能力的自變數,稱為控制
變數
控制源自於實現時排除干擾因素,在實驗室中可提
供某種特定環境來排除其他因素影響,但社會科學
實驗通常難以照辦。
社會科學的控制變數:


將 CV依據理論引入研究模式
迴歸分析可將CV對依變數之影響列入考慮
上機:〔主要分析檔(含虛擬變數)〕
IV
CV
網路使用行為
瀏覽查詢
電子郵件
聊天
下載
電腦遊戲
網路成癮
性別
教育程度
休閒活動型態
研究假設:
H1:網路使用行為會影響網路成癮。
H1-1:瀏覽查詢對網路成癮具顯著影響力。
H1-2:電子郵件對網路成癮具顯著影響力。
H1-3:聊天對網路成癮具顯著影響力。
H1-4:下載對網路成癮具顯著影響力。
H1-5:電腦遊戲對網路成癮具顯著影響力。
報表整理
變數
休
閒
型
態
教
育
程
度
性
別
係數
VIF
係數
VIF
係數
VIF
係數
VIF
係數
VIF
D1
.071
1.645
.056
1.596
.093
1.607
.057
1.580
.038
1.564
D2
.046
1.149
.042
1.144
.035
1.139
.063
1.165
.057
1.141
D3
.061
1.262
.032
1.260
.061
1.251
.069
1.264
.073
1.250
D4
-.036
1.297
-.059
1.227
-.025
1.242
-.052*
1.226
-.038
1.216
D5
.174*
1.389
.169*
1.391
.122
1.424
.174*
1.389
.164
1.390
D6
-.256*
3.285
-.258*
3.283
-.286*
3.283
-.269*
3.279
-.313
3.285
D7
-.108
3.937
-.088
3.953
-.190
4.028
-.154
4.009
-.267
4.014
D8
-.047
2.296
-.049
2.306
-.103
2.343
-.054
2.293
-.114
2.293
.154*
1.172
.128
1.126
.135
1.127
.070
1.217
-.076
1.245
.299***
1.106
.624***
1.147
D9
瀏覽
查詢
.138
1.138
電子
郵件
.129
1.143
聊天
下載
.202**
1.176**
*
電腦
遊戲
R平方
.142**
.140**
.207***
.160***
.466***
註1:D1=1表室內活動,D2=1表社交活動,D3=1表文化知性,D4=1表戶外活動,全部0表體能活動;D5=0
表國小以下,D6=0表國中,D7=0表高中,D8=0表大專(學),全部0表研究所以上;D9=1表男性,0表女性
註2:*表p<0.05,**表p<0.01,***表p<0.001
類別變數當解釋變數





類別變數本身也可當成解釋變數
如果解釋變數都是類別變數,依變數是連續變
項,可採用獨立樣本T檢定與變異數分析
當然也可以使用迴歸分析來進行檢定
符合同質性的假設即可以使用迴歸進行檢定
但必須把類別變數虛擬化
情況I
性別
上機:〔主要分析檔(含虛擬變數)〕
網路使用行為
瀏覽查詢
電子郵件
聊天
下載
H1:不同性別在網路使用行為上有顯著差異
H1-1:不同性別在瀏覽查詢上有顯著差異。
H1-2:不同性別在電子郵件上有顯著差異。
H1-3:不同性別在聊天上有顯著差異。
H1-4:不同性別在下載上有顯著差異。
情況II 上機:〔主要分析檔(含虛擬變數)〕
休閒行為
休閒型態
休閒時間
內控
積極
低焦慮
高自尊
情況III
上機:〔主要分析檔(含虛擬變數)〕
聊天
下載
電腦遊戲
休閒活動型態
教育程度
性別
網路成癮
報表整理
變數
F 檢定
性別
.403
休閒型態
.629
教育程度
6.748***
聊天
9.313**
下載
1.776
電腦遊戲
96.903***
總檢定
F=14.166***,R 平方
= .493
註:**表p<0.01,***表p<0.001
報表整理
變數
休閒型態
教育程度
性別
係數
VIF
D1
.065
1.612
D2
.044
D3
.071
D4
-.017
1.244
D5
.131*
1.431
D6
-.324**
3.289
D7
-.296**
D8
-.148
D9
-.039
F=.629
F=6.748***
1.169
1.264
4.084
2.351
F=.403
1.327
聊天
.192**
1.363
下載
-.089
1.541
電腦遊戲
.607***
1.311
總檢定
F=14.166***,R 平方 = .493
註1:D1=1表室內活動,D2=1表社交活動,D3=1表文化知性,D4=1表戶外活動,全部0表體能活
動;D5=0表國小以下,D6=0表國中,D7=0表高中,D8=0表大專(學),全部0表研究所以上;D9=1
表男性,0表女性
註2:*表p<0.05,**表p<0.01,***表p<0.001
類別變數當調節(干擾)變數




當自變數與依變數間的關係,若在不同的文獻
結論中有顯著正向或顯著負向影響兩種論點時,
表示在這兩個變數間可能存在第三個變數干擾
兩者間的關係
干擾變數會影響x與y的方向或者強度
干擾變數也有人稱為調節變數,兩者是同一個
英文單字,只是翻譯上的不同
調節變數本身也是解釋變數
上機:〔主要分析檔〕
性別
網路使用行為
瀏覽查詢
電子郵件
聊天
下載
網路成癮
H1:性別對網路使用行為與網路成癮間具調節作用。
H1-1:性別對瀏覽查詢與網路成癮間具調節作用。
H1-2:性別對電子郵件與網路成癮間具調節作用。
H1-3:性別對聊天與網路成癮間具調節作用。
H1-4:性別對下載與網路成癮間具調節作用。
報表整理
變數
F檢定統計量
性別
.580
瀏覽查詢
4.162*
電子郵件
.
.037
.372
4.061*
聊天
23.421***
下載
性別*瀏覽查詢
5.579*
.140
性別*電子郵件
.051
性別*聊天
1.271
性別*下載
R平方
1.110
.609
.041
註:*表p<0.05,**表p<0.01,***表p<0.001
.040
.131***
.055*

問題:可否直接將兩個變數相乘之後在利用迴
歸或層級式迴歸進行調節變數的檢定?
干擾變數的檢定


干擾變數就是調節變數,檢定是否具有干擾,
在統計上相當於檢定兩變數是否存在交互作用。
干擾變數在檢定時若不考慮干擾變數的類型,
可分成含有控制變數與沒有控制變數兩類
不含控制變數的干擾變數檢定
類別變數
類別變數

連續變項
使用一般線性模式或雙因子變異數分析進行檢
定
連續變項
類別變數
連續變項

連續變項
類別變數
使用一般線性模式進行檢定
連續變項
連續變項
連續變項

連續變項
使用迴歸分析或一般線性模式進行檢定

建議把連續變項區分成高、低兩組類別
上機:直接交乘,檔案〔主要分析檔〕
網路使用行為
瀏覽查詢
電子郵件
聊天
下載
電腦遊戲
家庭幸福
網路成癮
研究假設:
H1:家庭幸福對網路使用行為與網路成癮間具調節效果。
H1-1:家庭幸福對瀏覽查詢與網路成癮間具調節效果。
H1-2:家庭幸福對電子郵件與網路成癮間具調節效果。
H1-3:家庭幸福對聊天與網路成癮間具調節效果。
H1-4:家庭幸福對下載與網路成癮間具調節效果。
H1-5:家庭幸福對電腦遊戲與網路成癮間具調節效果。
報表整理
變數
係數
VIF
係數
VIF
係數
VIF
係數
VIF
係數
VIF
家庭幸福
-.232
29.266
.071
18.532
.020
15.129
-.281
15.497
.162
5.001
瀏覽查詢
-.083
58.052
.373
56.779
.498
53.390
-.306
75.900
1.132*
54.038
-.550
55.225
電子郵件
聊天
下載
電腦遊戲
家庭幸福*瀏覽查詢
.302
103.627
家庭幸福*電子郵件
-.260
77.849
家庭幸福*聊天
-.194
71.374
家庭幸福*下載
.580
93.239
家庭幸福*電腦遊戲
R平方
.022
.026
註:*表p<0.05,**表p<0.01,***表p<0.001
.112***
.051*
.355***
上機:高低分組
內控
網路使用行為
網路成癮
假設:內控人格特質對網路使用行為與網路成癮間的影響
力具顯著的調節效果,且高內控人格特質會加強網路使用
對網路成癮的影響效果。

一些調節作用圖形說明
低
高
低
高
低
高
低
高
含控制變數的干擾變數檢定
家庭幸福
網路使用行為
瀏覽查詢
電子郵件
聊天
下載
電腦遊戲
休閒型態
教育程度
性別
網路成癮
研究假設:
H1:家庭幸福對網路使用行為與網路成癮間具調節效果。
H1-1:家庭幸福對瀏覽查詢與網路成癮間具調節效果。
H1-2:家庭幸福對電子郵件與網路成癮間具調節效果。
H1-3:家庭幸福對聊天與網路成癮間具調節效果。
H1-4:家庭幸福對下載與網路成癮間具調節效果。
H1-5:家庭幸福對電腦遊戲與網路成癮間具調節效果。
報表整理
變數
係數
係數
係數
係數
係數
D1
.068
.051
.086
.058
.046
D2
.044
.039
.031
.059
.063
D3
.063
.030
.058
.070
.077
D4
-.039
-.061
-.029
-.052
-.034
D5
.168*
.166*
.117
.171*
.172**
D6
-.264*
-.260*
-.293*
-.269*
-.298**
D7
-.108
-.086
-.193
-.151
-.258*
D8
-.055
-.053
-.109
-.055
-.104
D9
.149
.125
.131
.072
-.066
家庭幸福
-.270
.024
-.070
-.216
.127
瀏覽查詢
-.184
休閒型態
教育程度
性別
電子郵件
.216
聊天
.
.231
下載
-.250
電腦遊戲
家庭幸福*瀏覽查詢
.918*
.444
家庭幸福*電子郵件
-.100
家庭幸福*聊天
082
家庭幸福*下載
.503
家庭幸福*電腦遊戲
R平方
-.296
.145**
.141**
.208***
.613**
.469***
註1:D1=1表室內活動,D2=1表社交活動,D3=1表文化知性,D4=1表戶外活動,全部0表體能活動;D5=0表國小以下,
D6=0表國中,D7=0表高中,D8=0表大專(學),全部0表研究所以上;D9=1表男性,0表女性
註2:*表p<0.05,**表p<0.01,***表p<0.001
層級式迴歸


統計學上稱為部分項的檢定
目的

檢查對原有迴歸模型,增加數個自變數,或者減少
數個自變數,此增加的自變數或減少的自變數,是
否為有效的解釋變數
沒有控制變數的層級式迴歸

上機
聊天
下載
電腦遊戲
休閒活動型態
教育程度
性別
網路成癮
報表整理
變數
瀏覽查詢
模式1
係數
VIF
.125
1.000
電子郵件
模式2
係數
VIF
模式3
係數
VIF
模式4
係數
VIF
模式5
係數
VIF
.065
1.369
-.061
1.557
-.072
1.575
.052
1.630
.116
1.369
.053
1.417
.046
1.424
.018
1.427
1.335 .303***
1.471
.207**
1.504
.096
1.242
-.147*
1.451
.599***
1.268
聊天
.335***
下載
電腦遊戲
R平方
.016
.026
.110***
.117***
.400***
R平方改變量
.016
.010
.084***
.007
.283***
含控制變數的層級式迴歸

名義量尺的控制變數必須虛擬化,連續變項的
控制變數則直接置入即可
上機
網路使用行為
瀏覽查詢
電子郵件
聊天
下載
電腦遊戲
性別
教育程度
休閒活動型態
網路成癮
報表整理
變數
休閒型態
教育程度
性別
模式1
模式2
模式3
係數
係數
係數
模式4
係數
模式5
係數
模式6
係數
D1
.034
.071
.056
.093
.057
.038
D2
.034
.046
.042
.035
.063
.057
D3
.045
.061
.032
.061
.069
.073
D4
-.074
-.036
-.059
-.025
-.052*
-.038
D5
.175*
.174*
.169*
.122
.174*
.164
D6
-.266*
-.256*
-.258*
-.286*
-.269
-.313
D7
-.103
-.108
-.088
-.190
-.154
-.267
D8
-.026
-.047
-.049
-.103
-.054
-.114
D9
.126
.154*
.128
.135
.070
-.076
瀏覽查詢
.138
電子郵件
.129
聊天
.299***
下載
.202**
電腦遊戲
.624***
R平方
.126**
.142**
.140
.207***
.160***
.466***
R平方改變量
.126**
.017
.014
.081***
.034**
.34***
註1:D1=1表室內活動,D2=1表社交活動,D3=1表文化知性,D4=1表戶外活動,全部0表體能活動;D5=0表國小以下,
D6=0表國中,D7=0表高中,D8=0表大專(學),全部0表研究所以上;D9=1表男性,0表女性
註2:*表p<0.05,**表p<0.01,***表p<0.001
以層級式迴歸進行調節檢定
情況I:不含控制變數
網路使用行為
瀏覽查詢
電子郵件
聊天
下載
電腦遊戲
家庭幸福
網路成癮
報表整理
變數
模式1
係數
模式2
模式1
模式2
係數
係數
係數
家庭幸福
-.074
-.232
瀏覽查詢
.141
-.083
電子郵件
-.052
.071
模式1
係數
-.067
.373
模式2
係數
.020
模式1
模式2
係數
係數
-.052
-.281
.214**
-.306*
模式1
係數
模式2
係數
.162
.223
1.132*
.010
.498
.153*
聊天
.331***
下載
電腦遊戲
家庭幸福*瀏覽
查詢
.302
家庭幸福*電子
郵件
-.260
家庭幸福*聊天
-.194
家庭幸福*下載
.580*
家庭幸福*電腦
遊戲
-.550
.213
R平方
.021
.022
.025
.026
.111***
.112***
.047*
.051*
.350***
.355***
R平方改變量
.021
.001
.025
.001
.111***
.001
.047*
.004
.350***
.005
情況II:含控制變數
網路使用行為
瀏覽查詢
電子郵件
聊天
下載
電腦遊戲
性別
教育程度
休閒活動型態
網路成癮
報表整理
變數
休閒型態
模式1
模式2
模式3
模式1
模式2
模式3
模式1
係數
係數
係數
係數
係數
係數
係數
模式2
係數
模式3
係數
D1
.034
.065
.068
.034
.051
.051
.034
.087
.086
D2
.034
.042
.044
.034
.039
.039
.034
.031
.031
D3
.045
.059
.063
.045
.030
.030
.045
.059
.058
D4
-.074
-.039
-.039
-.074
-.062
-.061
-.074
-.028
-.029
D5
.175*
.169*
.168*
.175*
.166*
.166*
.175*
.117
.117
D6
-.266*
-.262*
-.264*
-.266*
-.262*
-.260*
-.266*
-.292*
-.293*
D7
-.103
-.110
-.108
-.103
-.088
-.086
-.103
-.192
-.193
D8
-.026
-.054
-.055
-.026
-.053
-.053
-.026
-.109
-.109
D9
.126
.150*
.149
.126
.125
.125
.126
.131
.131
家庭幸福
-.039
-.270
-.023
.024
-.033
.070
瀏覽查詢
.145
-.184
教育程度
性別
電子郵件
.131
.216
聊天
.302
家庭幸福*瀏覽查詢
.231
.444
家庭幸福*電子郵件
-.100
家庭幸福*聊天
.082
R平方
.126**
.144**
.145**
.354**
.375**
.375**
.126**
.208***
.208***
R平方改變量
.126**
.018
.002
.126**
.015
.000
.126**
.082***
.000
中介變數的檢定

中介變數檢定有兩派理論


第二派區分成部分中介與完全中介



只要檢定xz,zy成立那麼z即具有中介效果
步驟1:檢定xy成立。
步驟2:檢定xzy
第二派理論需注意共線性問題
上機:〔檔案:主要分析檔〕 第一套理論
網路易得性
電腦遊戲
網路成癮
假設:電腦遊戲對網路易得性與網路成癮間具中介效果。
執行結果
網路易得性
.377***
電腦遊戲
.591***
網路成癮
第二套理論
網路易得性
網路易得性
網路成癮
電腦遊戲
網路成癮
執行結果
網路易得性
網路易得性
.379***
.377***
網路成癮
電腦遊戲
.181**
523***
網路成癮