ch6 用连续时间复指数信号表示信号:拉普拉斯变换(the Laplace

Download Report

Transcript ch6 用连续时间复指数信号表示信号:拉普拉斯变换(the Laplace

Ch6 Representation Signals by Using ContinuousTime Complex Exponentials: The Laplace Transform
(用连续时间复指数信号表示信号:拉普拉斯变换)
Ch6.1 引言(Introduction)
(一)使用拉普拉斯变换分析信号
•The Laplace Transform (拉普拉斯变换)
•Properties of Laplace Transform (拉普拉斯变换的性质)
•Inversion of the Laplace Transform (拉普拉斯反变换)
(二)使用拉普拉斯变换分析系统
•Solving Differential Equations With Initial Conditions
(系统响应求解)
•The Transfer Function (系统函数)
From Fourier transform to Laplace transform
从傅里叶变换到拉普拉斯变换
x(t)=etu(t)  >0的傅里叶变换?
不存在!
将 x(t) 乘以衰减因子e -t
F [ x (t ) e
t
]



x (t )e
t
e
 j t
d t  0 e  t e  (   j  ) t d t
令s    j
若 


 0 e

 ( s  ) t
1
s 
dt
From Fourier transform to Laplace transform
从傅里叶变换到拉普拉斯变换
推广到一般情况
F [ x (t ) e
t
令s= +j
定义:
]



x (t )e



x (t ) e

X (s) 

t
 st


x (t ) e
e
 j t
dt 



x (t )e
 (  j ) t
dt  X (s)
 st
拉普拉斯正变换
dt
对 x(t)e-t求傅里叶反变换可得
拉普拉斯反变换
dt
x (t ) 
1
2 πj
  j

 j
st
X ( s )e ds
The Laplace transform applies to more general signals than the
Fourier transform does.
(a) Signal for which the Fourier transform does not exist.
(b) Attenuating factor associated with Laplace transform.
(c) The modified signal x(t)e-t is absolutely integrable for
 > 1.
Real and imaginary parts of the complex
exponential est, where s =  + j.
Ch6.2 the Laplace Transform
(拉普拉斯变换)
•
•
•
•
Definitions (定义)
Regions of Convergence (收敛域)
S plane (S平面)
Zeros and Poles (零极点)
Bilateral Laplace Transform
(双边拉普拉斯变换)
X (s) 

x (t ) 
1


x (t ) e
 st
  j
2 πj

 j
dt
st
X ( s )e ds
信号x(t)可分解成复指数est的加权叠加,权重正比于X(s) 。
符号表示:
X ( s )  L [ x ( t )]
x (t )  L
x (t ) 
 X ( s )
L
1
[ X ( s )]
Regions of Convergence
(双边拉普拉斯变换的收敛域)
收敛域: 双边拉普拉斯变换存在的条件



| x (t ) | e
t
dt  
对任意信号x(t) ,若满足上式,则 x(t)应满足
lim x ( t ) e
t 
t
0
Regions of Convergence (ROC):使上式成立的所有值。
Regions of Convergence(收敛域)
Ex: x (t) = et u(t) 的傅里叶变换?拉氏变换?
S平面
j
收
左半平面
敛
0
X(s)不存在
区
右半平面

X(s)存在
x1 ( t )  e u ( t ) 和 x 2 ( t )   e u (  t )
at
L [ x 1 ( t )]  L [ e
at
t
L [ x 2 (  t )]  L [  e
u ( t )]
t
u (  t )]


1
s 
1
s 
Re(s)>-a
Re(s)< -a
不同的信号,虽然具有相同形式的拉氏变换,但收敛域
不同。
The ROC for x(t) = eatu(t) is depicted by the
shaded region. A pole is located at s = a.
The ROC for y(t) = –eatu(–t) is depicted by the
shaded region. A pole is located at s = a.
拉普拉斯变换与傅里叶变换的关系
1)当收敛域包含j 轴时,拉普拉斯变换和傅里
叶变换均存在。 X ( j  )  X ( s ) s  j
2)当收敛域不包含j 轴时,拉普拉斯变换存在
而傅里叶变换均不存在。
Zeros and Poles(零极点)
Zeros
poles
H (s) 
bm s
s
 bm
n
m
 b m 1 s
 a n 1 s
m 1
n 1
   b1 s  b 0
   a1 s  a 0
( s  r1 )( s  r2 )  ( s  rm )
( s  s1 )( s  s 2 )  ( s  s n )
MATLAB code:
b=[1];a=[1 3];
Splane(b,a);
w=linspace(0,5,256);
subplot(2,1,1);
splane(b,a);
h=freqs(b,a,w);
subplot(2,1,2);
plot(w,abs(h));
Ch6.3 The Unilateral Laplace Transform
(单边拉普拉斯)
Definitions:
L [ x ( t )]  X ( s ) 


0

x (t ) e
 st
dt
基本信号的拉普拉斯变换
e
t
u (t )
t
e u (t )
e
e
 j 0 t
j 0 t
u (t )
u (t )
 
L
 
L
 
L
 
L
1
s
1
s
1
s  j 0
1
s  j 0
Re( s )   
Re( s )  
Re( s )  0
Re( s )  0
基本信号的拉普拉斯变换
cos  0 t u ( t )
sin  0 t u ( t )
 (t )

(n)
(t )
s
L
 
s 
2

L

L
Re( s )  0
0
L

2
0
s 
2
Re( s )  0
2
0
Re(s)  - 
1
s
n
Re(s)
 -
基本信号的拉普拉斯变换
1
 
L
u (t )
Re( s )  0
s
1

L
tu ( t )
s
n
t u (t )
n!

L
s
te
 t
u (t )
 
L
Re(s)  0
2
Re(s)  0
n 1
1
(s   )
2
Re(s)   
基本信号的拉普拉斯变换
e
e
 0 t
 0 t
cos  0 t u ( t )

sin  0 tu ( t )

s0
L
(s   0 )  
2
0
L
t cos  0 tu ( t )
 
t sin  0 tu ( t )

L
2
0
(s   0 )  
2
s
(s
2
2
 0
(s
2
Re(s)    0
2
 )
2
0
2
2 0 s
L
2
0
Re(s)   0
 )
2
0
2
Re(s)  0
Re(s)  0
Ch6.4 properties of Laplace Transform
(单边拉普拉斯的性质)
1. Linearity(线性特性)
u
ax 1 ( t )  bx 2 ( t ) 
aX 1 ( s )  bX 2 ( s )
L
2. scaling (展缩特性)
x ( at ) 
Lu
1
a
X (s / a)
a0
3. Time Shift(时移特性)
u
x ( t ) u ( t ) 
X (s)
L
if
x ( t  t 0 ) u ( t  t 0 )  e
Lu
then
 st 0
X (s)
4. s-domain shift(指数加权性质---s域位移)
e
Ex:
L[ e
 t
s0t
u
x ( t ) 
X ( s  s0 )
L
cos  0 t  u ( t )] 
s
(s   )  
2
2
0
5. convolution(卷积特性)
x ( t ) * x ( t )  X ( s )Y ( s )
Lu
Example:Find the unitial Laplace transform of
y(t)=e3 tu(t)*etu(t)
Y (s) 
1
( s  3 )( s  1)
A  Y ( s )( s  3 )
B  Y (s)s
y (t ) 
1
3
s0
(1  e
 3t
s  3


A
s3
 
1
3
)u (t )
1
3

B
s 1
6. Differentiation in the S-domain (S域微分特性)
 tx ( t )  
Lu
dX ( s )
ds
Ex:
L [ u ( t )] 
1
s
L [ tu ( t )]  
d
( )  2
s
ds s
L [ t u ( t )]  
2
L [ t u ( t )] 
1
1
d
(
1
ds s
n!
n
s
n 1
2
)
2
s
3
n
L[t e
 t
u ( t )] 
n!
(s   )
n 1
7. Differentiation in the time-domain(时域微分特性)
d x (t )

 sX ( s )  x ( 0 )
L
dt
证明:
 d x (t ) 
L


 dt 


0
d x (t )

e
 st
dt
dt
 x (t )e
 st


0


 x ( t )(  s e
0
)dt



 st
  x (0 )  s   x (t )e
 st

d t  sX ( s )  x ( 0 )
0
2
d x (t )
dt
2


 s X ( s )  sx ( 0 )  x ' ( 0 )
L
2
n
d x (t )
dt
n
 s X (s)  s
n
n 1

x (0 )  s
n2

x ' ( 0 )  ...  x
n 1

(0 )
8. Integration Property(积分特性)
t
 x ( ) d  
Lu
X (s)
Where,
Ex:
1

L[ r (t ) 

t
0


0

x (0 )
s

x (0 ) 
1
s


x ( )d 
u ( ) d  ] 
L [ u ( t )]
s

1
s
2
9. Initial- and Final-Value Theorems
(初值定理和终值定理)

lim  f ( t )  f ( 0 )  lim sF ( s )
t 0
s 
lim f ( t )  f (  )  lim sF ( s )
t
s 0
Ch6.5 Inversion of Unilateral Laplase transform
(拉普拉斯反变换)
部分分式法求拉普拉斯反变换:由X(s)求x(t)
X (s) 
bM s
M
 b M 1 s
M 1
aN s
N
 a N 1 s
N 1
   b1 s  b 0
   a1 s  a 0
 c 0  c1 s  c 2 s    c M  N s
2
M N
D (s)

A( s )
当MN时存在
由于  ( t )  1
真分式
 ( t )  s
L
L
'

所以 x ( t )  c 0  ( t )  c1 ( t )  c 2  ( t )    c M  N 
'
''
(M N )
( t )  s
(M N )
L
M N
 D (s) 
(t )  L 

A
(
s
)


1
Inversion by Partial-Fraction Expansion
(部分分式法求拉普拉斯反变换)
x 0 (t )  L
设
1
 D (s) 


A
(
s
)


(1) A(s)=0有N个单极点
D (s)
A( s )
其中:

A1
s  d1

Ai  ( s  d i )
x 0 ( t )  ( A1 e
d 1t
利用部分分式法:
s  d1 ,
A2
s  d2
d 2 , , d N
 
D (s)
A( s )
 A2 e
sdi
d 2t
AN
sdN
i  1, 2 ,  , N
   AN e
dNt
)u (t )
Ex: Find the inverse Laplase transform of
X (s) 
s2
s  4 s  3s
3
2
Solution:
X (s) 
s2

s2

k1

k2
s
s  1
s ( s  1)( s  3 )
s2
2
k1  ( s ) X ( s ) s  0 

s0
( s  1)( s  3 )
3
s2
1
k 2  ( s  1) X ( s ) s   1 

s  1
s ( s  3)
2
s2
1
k 3  ( s  3) X ( s ) s  3 

s  3
s ( s  1)
6
2
1 t
1 3t
x (t )  u (t )  e u (t )  e u (t )
3
2
6
s  4 s  3s
3
2

k3
s  3
num=[1 2]; den=[1 4 3 0];[r,p]=residue(num,den)
r = -1/6 -1/2 2/3 p = -3 -1 0
Inversion by Partial-Fraction Expansion
(部分分式法求拉普拉斯反变换)
s  d1  d 2    d N  d
(2) A(s)=0有N重极点
D (s)
A(s )
其中:
Ai 
1

D (s)
(s  d )
d
N
( N  i )! d s
N i
(s  di )

sd

A2
(s  d )
N i
Ai
则:

A1
[( s  d )
D (s)
]
A(s)

L
i
N
2
Ai t
 
sd
AN
(s  d )
N
i  1, 2 ,  , N
i 1
( i  1)!
x 0 ( t )  ( A1  A 2 t   
dt
e u (t )
AN t
N 1
N 1
dt
) e u (t )
Ex: Find the inverse Laplase transform of X ( s ) 
Solution:
X (s) 
s2
s ( s  1)
k1
X (s) 

s
 (  2  2 e
Lu
3
( s  1)
s0

k 4  ( s  1) X ( s )

k3
( s  1)
( s  1)
s  1

3
3阶重极点
k2 
2
t
t e )u (t )
s  1
(
ds
2
3
1 d ( s  1) X ( s )
ds
2
[r,p]=residue([1 -2],[1 3 3 1 0]);
r =2 2 3 -2 p = -1 -1 -1 0
( s  1)
s  1
3
 2
s0
s
d ( s  1) X ( s )
2

3
k4
s2
3
X(s)有1个
2

s2
3
k3 
 2te
t
s ( s  1)
2
k2
k 1  sX ( s )
t
s2
s  1
s2
3
)
'
s  1
2
s
1 s  2 ''
 (
)
2
s
s  1
2
3
Ex: Find the inverse Laplase transform of
s  2s  4
3
X (s) 
s  4s  2
2
Solution: X(s)为有理假分式,将X(s)化为有理真分式
X (s)  s  4 
20 s  12
s  4s  2
2
1
x ( t )   ( t )  4 ( t )  L [
'
20 s  12
s  4s  2
2
x ( t )   ( t )  4 ( t )  20 . 6 e
'
 4 . 45 t
]
u (t )  0 .6 e
[r,p,k]=residue([1 0 2 -4],[1 4 -2])
0 . 45 t
u (t )
Inversion by Partial-Fraction Expansion
(部分分式法求拉普拉斯反变换)
(3) A(s)=0有复极点 s    j 
D (s)
A( s )

A1
s  (  j  )

A2
s  (  j  )
D (s)
若x0(t)为实信号,则A1与A2为共轭以保证A ( s ) 为实系数。
则
D (s)

A(s)


c1  B1


令
B   B2
c2  1


B1 s  B 2
(s   )  
2
c1 ( s   )
(s   )  
x 0 ( t )  c1 e
2
t
2

2
c2
(s   )  
2
2
t
cos(  t ) u ( t )  c 2 e sin(  t ) u ( t )
Ex: Find the inverse Laplase transform of
s 8
2
(1) X ( s ) 
(s  4)
2
1
(2) X (s) 
(3) X ( s ) 
3s ( s  4)
2
2
s 8
2
(1) X ( s ) 
Solution:
X (s)  1 
(s  4)
 8s  8
(s  4)
2
k1  ( s  4 ) x ( s )
 1 
2
k2 
d
2
s  4
(s  4) x(s)
x (t )   (t )  8te
(s  4)
 ( 8 s  8)
2
ds
k1
k2

2
s  1
s  4
 24
 ( 8 s  8)   8
'
s  4
4 t
u ( t )  24 e
4 t
u (t )
1 e
2 s
s(s  4)
2
Ex: Find the inverse Laplase transform of
s 8
2
(1) X ( s ) 
(s  4)
Solution:( 2 ) X ( s ) 
令s2=q,
(2) X (s) 
2
(3) X ( s ) 
3s ( s  4)
2
2
1 e
2 s
s(s  4)
2
1
3s ( s  4)
2
2
则 X (s) 
k1  q 
1

3q ( q  4 )
1
q (q  4)
k 2  (q  4) 
于是
1
3
q (q  4)
X (s) 
(
q
4
1
1
(
k1
1

q0
1
1
q  4

 
4
1
3 4s
4(s  4)
1
1
x (t ) 
( t  sin 2 t ) u ( t )
12
2
2
1
2
)

k2
(q  4)
)
Ex: Find the inverse Laplase transform of
s 8
2
(1) X ( s ) 
(s  4)
2
(2) X (s) 
Solution:( 3 ) X ( s ) 
1 e
1
3s ( s  4)
2
2
(3) X ( s ) 
1 e
2 s
s(s  4)
2
2 s
s(s  4)
先用部分分式求
2
X 1(s) 
1
的反变换
s(s  4)
2 s
e
再利用时移特性求
X 2 (s) 
的反变换
2
s(s  4)
1
k1 k 2 s  k 3
X 1( s ) 

 2
k2, k3用待定
2
s(s  4)
s
s 4
系数法求
1
1
k1 
k2  
k3  0
4
4
1
1
x1 ( t )  (1  cos 2 t ) u ( t )
x 2 ( t )   [1  cos 2 ( t  2 )] u ( t  2 )
4
4
2
Ch6.6 Solving Diffrential Equations with Initial
Conditions(利用拉普拉斯变换分析系统响应)
时域差分方程
解微分方程
拉
氏
反
变
换
拉
氏
变
换
S域代数方程
时域响应y(t)
解代数方程
S域响应Y(s)
Solving Diffrential Equations with Initial
Conditions(利用拉普拉斯变换分析系统响应)
2
d y (t )
dt
2
 a1
d y (t )
dt
2
 a 2 y ( t )  b0
d x (t )
dt
2
 b1
d x (t )
dt
 b2 x (t )
已知 x (t),y(0),y' (0) ,求y(t)。
求解步骤:
1) 经拉氏变换将域微分方程变换为域代数方程
2) 求解s域代数方程,求出Yzi(s), Yzs (s)
3) 拉氏反变换,求出响应的时域表示式
Solving Diffrential Equations with Initial
Conditions(利用拉普拉斯变换分析系统响应)
y"(t)
a2y (t)
a1y'(t)



[ s Y ( s )  sy ( 0 )  y ' ( 0 )]  a 1 [ sY ( s )  y ( 0 )]  a 2 Y ( s )
2
 b 0 s X ( s )  b1 sX ( s )  b 2 X ( s )
2
b0 x " ( t )  b1 x ' ( t )  b 2 x ( t )

Y (s) 


sy ( 0 )  y ' ( 0 )  a1 y ( 0 )
s  a1 s  a 2
2
2

Yzi(s)
y ( t )  y zs ( t )  y zi ( t )
b 0 s  b1 s  b 2
s  a1 s  a 2
2
Yzs(s)
1
 L {Y zs ( s )  Y zi ( s )}
X (s)
Ex: Use the unilateral Laplace transform to determine the output of a system
represented by the differential equation
y''(t) + 5y'(t) + 6y(t) = 2x '(t) + 8x(t)
in response to input x(t) = e-tu(t).Assume that the initial conditions
on the system are y(0-)=3 and y'(0-)=2.
Solution:Using the differential property and taking the unilateral
Laplace transform of both sides of the differential equation, we
obtain (对微分方程取拉氏变换可得)


s Y ( s )  sy ( 0 )  5[ sY ( s )  y ( 0 )]  6Y ( s )  2 sX ( s )  8 X ( s )
2
Y (s) 
2s  8
s  5s  6
2

X (s) 

( s  5) y (0 )  y ' (0 )
(s  5s  6)
2
 Y zs ( s )  Y zi ( s )
Y zi ( s ) 
3 s  17
2
s  5s  6
1

11
s2
y zi ( t )  L {Y zi ( s )}  11 e
2t

8
s3
 8e
3t
,t  0
Ex: Use the unilateral Laplace transform to determine the output of a system
represented by the differential equation
y''(t) + 5y'(t) + 6y(t) = 2x '(t) + 8x(t)
in response to input x(t) = e-tu(t).Assume that the initial conditions
on the system are y(0-)=3 and y'(0-)=2.
Solution:
Y zs ( s ) 

2s  8

1
s  5s  6 s  1
2
3
s 1
1

4
s  2
2s  8


( s  2 )( s  3 ) s  1
1

y zs ( t )  L {Y zs ( s )}  ( 3 e
1
( s  3)
t
y ( t )  y zs ( t )  y zi ( t )  3 e
t
 4e
2t
 7e
2t
e
3t
 7e
)  u (t )
3t
,t  0
Ch6.7 Laplace Transform Methods in Circuit Analysis(利
用拉普拉斯变换分析电路)
Laplace Transform Circuit Models(电路的S域模型):
时域
 R ( t )  Ri R ( t )
 L (t )  L
 c (t ) 
1
C
d i L (t )
复频域
V R ( s )  RI R ( s )
V L ( s )  sLI L ( s )  Li L ( 0 )
dt
t
  i c ( ) d 
Vc (s) 
1
sC
I c (s) 
1
C

V c (0 )
Laplace Transform Circuit Models
(电路的S域模型)
R、L、C串联形式的S域模型
IR(s)

R
IL(s)
VR(s)
IC(s)


1
sC
sL

VL(s)
1
vc (0 )
s


VC(s)
LiL (0 )




Ex: Use the Laplace transform circuit models to determing the voltage vc(t) in the
circuit for an applied voltage EU(t). The voltage across the capacitor vc(0-)= -E.
R
R
Eu(t)



i(t)
C
1/sC
E
s
vC(t)

 E /s

I (s)




Solution:建立电路的s域模型,由s域模型写回路方程
(R 
1
E
)I (s) 
sC
求出回路电流

s
E
s
2E
I (s) 
s(R 
1
)
sC
电容电压为
VC ( s ) 
I (s)
sC

E
1
 E( 
s
s
vc (t )  E (1  2e

1
RC
t
2
s
), t  0
1
RC
)
VC(s)

Ch6.11 The Transfer Function(系统函数)
x(t)
X(s)
yzs(t)=x(t)*h(t)
h(t)
H(s)
Yzs(s)=X(s)H(s)
系统函数:系统在零状态条件下,输出的拉氏变换式
与输入的拉式变换式之比,记为H(s)。
H (s) 
L [ y zs ( t )]
L [ x ( t )]

Y zs ( s )
X (s)
The Transfer function and Differential Equation
(系统函数与微分方程)
Ex: Find the transfer function of the LTI system descriped
by the differential equation
y''(t) + 7y'(t) +10y(t) = 2x '(t) + x(t)
2
[ s  7 s  10 ]Y ( s )  ( 2 s  1) X ( s )
H (s) 
Y (s)
X (s)

2s  1
2
s  7 s  10
Causality and Stability(因果性与稳定性)
The relationship between the locations of poles and the impulse response
in a causal system. (a) A pole in the left half of the s-plane corresponds
to an exponentially decaying impulse response. (b) A pole in the right
half of the s-plane corresponds to an exponentially increasing impulse
response. The system is unstable in this case.
Causality and Stability(因果性与稳定性)
The relationship between the locations of poles and the impulse response in a
stable system. (a) A pole in the left half of the s-plane corresponds to a
right-sided impulse response. (b) A pole in the right half of the s-plane
corresponds to an left-sided impulse response. In this case, the system is
noncausal.
Causality and Stability(因果性与稳定性)
A system that is both stable and causal must have a transfer function with
all of its poles in the left half of the s-plane, as shown here.
Causality and Stability(因果性与稳定性)
连续时间LTI系统BIBO稳定的充分必要条件是



h ( ) d   S  
因果系统在s域有界输入有界输出(BIBO)的充
要条件是系统函数H(s)的全部极点位于的 左半s平
面。
Ex: A causal system has the transfer function
H (s) 
2
s3

1
s2
Find the impulse response. Is the system stable?
Solution :
h (t )  2 e  3 t u ( t )  e  2 t u ( t )
极点s= -3,在s左半平面;
极点s= 2, 在s右半平面。
The system is not stable(不稳定)。
Ch6.13 Determing the Frequency Response from
Poles and Zeros(由零极点确定系统频率响应)
当收敛域包含j轴时,
则系统频响特性:
H ( j )  H ( s )
j
收
敛
s  j
域
H ( j )  H ( j ) e
幅频响应
j (  )
相频响应

Determing the Frequency Response from
Poles and Zeros(由零极点确定系统频率响应)
m
 (s  z
对于零极增益表示的系统函数
H (s)  K
n
i 1
m
 ( j  z j )
H ( j )  K
j 1
n
 ( j  p i )
i 1
)
j 1
 (s 
当系统稳定时,令s=j,则得
j
pi )
Determing the Frequency Response from
Poles and Zeros(由零极点确定系统频率响应)
j
a
复数a和b及ab的向量表示
a
a-b
j
|a-b|
b


b

0
0
j
Di
pi
j
i
0
Nj
j
zj
系统函数的向量表示

( j  z j )  N j e
j
( j  p i )  D i e
j i
j
EX: Sketch the magnitude response and phase
1
response of the LTI system H ( s ) 
s  1
H ( j )  H ( s )
Solution:
H ( j )
H ( j )
H ( j )

 0
 1
1


1
j  1
 ( j )
 0
 0 0  0
 ( j )
  1  0   1   arctan 1   45
 ( j )
  0  0      90

0
0.
8
0.
6
0.
4
0.
2
0 1


 ( j )
1
j1
0

H ( j )
Db
-1

1
D1
2
1

0
D
j a
 (1)
1
D0
j
D1
s  j
1
5
10

-90o
5
10
