Transcript Матрицей -
Линейная алгебра
Матрицы. Основные понятия.
Действия над матрицами
Метод обратной матрицы решения систем
линейных уравнений
Матрицы. Основные понятия
Матрицей называется прямоугольная таблица, составленная
из каких – либо элементов и имеющая m строк и n столбцов.
Элементами матрицы могут быть числа, алгебраические
выражения, функции и т.д.
a11
a 21
A
a
m1
a12
a 22
am 2
a1n
... a 2n
... amn
...
Матрицы обозначаются заглавными буквами латинского алфавита,
элементы матрицы – теми же маленькими буквами.
Размерность матрицы обозначается:
dim A m n
количество
количество
строк столбцов
Матрицы. Основные понятия
Если
m n , то матрица называется прямоугольной.
Если m n
порядка).
, то матрица называется
квадратной (n - ного
Любое число (скаляр) можно представить как матрицу первого
порядка, размерностью 1 1 .
Матрица типа 1 n называется матрица-строка:
a
11
a12 a13 ... a1n
Матрица типа m 1 называется матрица-столбец:
a11
a 21
...
a
m1
Матрицы. Основные понятия
Квадратная матрица называется единичной, если ее элементы,
расположенные на главной диагонали, равны единице,
остальные – нулю (обозначается буквой Е):
1 0 0
E 0 1 0
0 0 1
Если все элементы квадратной матрицы равны нулю, то она
называется нуль-матрицей и обозначается символом 0.
0 0 0
O 0 0 0
0 0 0
Матрицы. Основные понятия
Для каждой квадратной матрицы n - ного порядка существует
определитель n - ного порядка, элементы которого равны
соответствующим элементам матрицы.
a11 a12
A a 21 a 22
a
31 a 32
a13
a 23
a 33
a11
a12
a13
det A a 21 a 22
a 31 a 32
a 23
a 33
Определитель любой единичной матрицы равен единице.
Если определитель матрицы равен нулю, то
называется вырожденной, в противном случае
невырожденная.
матрица
матрица
Действия над матрицами
Равенство матриц
Матрицы равны, если они имеют одинаковую размерность и их
соответствующие элементы равны.
A B
dim A dimB; aij bij
Сложение (вычитание) матриц
Сумма и разность матриц существуют только для матриц
одинакового размера, при этом соответствующие элементы
матриц складываются или вычитаются.
C A B
dim A dim B dim C
c ij aij bij
Действия над матрицами
Умножение матрицы на число
При умножении матрицы A на число k получается матрица того же
размера, при этом каждый элемент матрицы A умножается на k.
B kA
dim A dimB; bij aij k
Найти значение выражения: C A 5 B
1 3 2
A
0 1 4
2 4 1
B
5 0 2
3 5 (4) 2 5 1 11 17 7
1 5 2
C
0 5 (5) 1 5 0 4 5 2 25 1 14
Действия над матрицами
Умножение матриц
Произведение матриц A * B определено только тогда, когда
число столбцов матрицы А равно числу строк матрицы В, в
противном случае произведение не существует.
dim A m n
dim B n k
C A B сущест в ует
dimC m k
Произведением матрицы A размера [m n] с элементами aij
на матрицу B размера [n k ] с элементами bjq называется
матрица C размера [m k ] с элементами:
n
c iq aij b jq
j 1
Действия над матрицами
1 0 2
A
3 1 4
0 5 1
B 2 1 1
3 2 0
0 5 1
B 2 1 1
3 2 0
1 0 2
A
3 1 4
6 9 1
14 24 4
Найти С = A * B
dim A 2 3
dim B 3 3
c12 1 5 0 1 2 2
c11 1 0 0 2 2 3
c13 1 1 0 1 2 0
6 9 1
C
14 24 4
cc
33 5 111 1
44 2
22
1
0
c 21 3 023 1 2 4 3
Действия над матрицами
Свойства операции произведения матриц:
2) AB AB ;
3) A B C AC BC ;
1) A BC AB C ;
4) В общем случае для произведения матриц не действует
переместительный закон: A B B A
иногда АВ существует, а ВА не имеет смысла. В случае, когда
АВ = ВА, матрицы А и В называются коммутативными.
5) Единичная матрица является коммутативной для любой
квадратной матрицы того же порядка:
EA AE A
6) Для двух квадратных матриц А и В одного порядка произведение
определителей равно определителю произведения .
det A det B det AB
Действия над матрицами
Нахождение обратной матрицы
Обратной матрицей по отношению к данной невырожденной
квадратной матрице A n - ного порядка, называется матрица,
которая, будучи умноженной как слева, так и справа на данную
матрицу, дает единичную матрицу.
Обратная матрица обозначается символом А-1. Таким образом,
согласно определению: АА-1=А-1А=Е.
1
A
A A
A det A 0 A
det A
T
1
Транспонированная матрица
Присоединенная матрица
получается из матрицы А Если определитель матрицы
получается путем замены каждого
путем замены строк т
равен нулю, то обратная
элемента матрицы А на его
соответствующими
матрица не существует
алгебраическое дополнение
столбцами
Действия над матрицами
0 3 1
0 3 1
A 2 4 1 det A 2 4 1
2 2 0
2 2 0
0 2 2 Из второй -2
T
A 2
A 3 4 строки
2 вычтем
строку
1 1 первую
0
-4
0 3 1
2 1
(1)4 2
2 1 0
2 2
2 2 0
2 -1
Разложим
-2 2 определитель
по элементам
3 столбца
6 -6
4 2
A11 3 2(1)2 3 2
2 320 42 3 5
A12 0
1 20 (1) 2
4
2
2
A 21A
020 (241(4)(
A1323
1)21
2
1 0( 1)5 6
1
)
A
AA
(
1
)
4
1 320.5
1 62 1
12 101 (2111)
31 22
A
(
1
)
6
3 2
1 4331 2 03 4
1
1
A 2 2
2 1 1
2
2
3
3
4
6
6
Метод обратной матрицы решения
систем линейных уравнений
Метод обратной матрицы рассмотрим на примере
решения квадратной системы 3 порядка.
a11x1 a12 x 2 a13 x 3 b1
a 21x1 a 22 x 2 a 23 x 3 b 2
a x a x a x b
32 2
33 3
3
31 1
Запишем эту систему в матричном виде. Обозначим:
a11 a12
A a 21 a 22
a
31 a 32
a13
a 23
a 33
x1
X x2
x3
b1
B b2
b3
Основная матрица
Матрица - столбецМатрица - столбец
системы свободных членов
неизвестных
Метод обратной матрицы решения
систем линейных уравнений
Тогда систему можно записать так:
a11 a12
A X a 21 a 22
a
31 a 32
a13 x1 a11x1 a12 x 2 a13 x 3 b1
a 23 x 2 a 21x1 a 22 x 2 a 23 x 3 b2
a x a x a x b
a 33 x 3 31 1
3
32 2
33 3
AX B
Найдем решение системы в матричном виде.
Предположим, что det A отличен от нуля и, следовательно,
существует обратная матрица А-1.
Умножим слева матричную запись системы на обратную матрицу:
A 1 A X A 1 B
E X A 1 B
X A 1 B
Метод обратной матрицы применим для решения квадратных
систем с невырожденной основной матрицей.
Метод обратной матрицы решения
систем линейных уравнений
Решить систему методом обратной матрицы.
3 x 2 x 3 1
2x1 4 x 2 x 3 2
2x 2x 3
2
1
X A 1 B
1 0 .5
1
1
A 1 1
1
2
3
3
x1
0 3 1
A 2 4 1 X x2
2 2 0
x3
1
B 2
3
1
B 2
3
-0,5
2
-5
0 .5
X 2
5