Multiplication of Polynomials
Download
Report
Transcript Multiplication of Polynomials
Section 5.2
Multiplying Polynomials
Multiplying Two Monomials
Multiplying a Polynomial
By a number
By a monomial
By another polynomial
The FOIL Method
Multiplying 3 or More Polynomials
Special Products
Simplifying Expressions
Applications
5.2
1
Multiplying Two (or more) Monomials
Multiply the numeric coefficients
Add exponents of matched variables
Include any unmatched variables
Learn to
do these
IN YOUR
HEAD!
Do the variables
Examples
in alpha order
(3)(2x) = 6x -4y(-2xy) = 8xy2 -2s(r) = -2rs
3x(2x)(3x) = 18x3
-5x3(4x2y) = -20x5y
-2(-y) = 2y
(-2b3)(3a)(a2bc) = -6a3b4c
5.2
2
For You
( 8 x y )( 5 x y )
4
7
40 x y
7
3
2
( 2 x yz )( 6 x y z )
2
9
7
12 x y
5.2
5
11
5
z
10
2
7
3
Multiplying a Polynomial by a Number
Positive numbers – law of distribution
5 times 2x2 – 3x + 7
5(2x2) – 5(3x) + 5(7)
10x2 – 15x + 35
Do this in your head?
Negative numbers – be careful!
-3 times 4y3 – 6y2 + y – 2
-3(4y3)– -3(6y2)+ -3(y) - -3(2)
-12y3 + 18y2 – 3y + 6
5.2
In your head?
4
Multiplying a polynomial by a
monomial
To multiply a polynomial by a monomial, we multiply each
term of the polynomial by the monomial.
3x2(6xy + 3y2) = 18x3y + 9x2y2
5x3y2(xy3 – 2x2y) = 5x4y5 – 10x5y3
-2ab2(3bz – 2az + 4z3) = -6ab3z + 4a2b2z – 8ab2z3
5.2
5
Multiplying a Polynomial by a
Polynomial (in general)
To multiply a polynomial by a polynomial, we
use the distributive property repeatedly.
Horizontal Method:
(2a + b)(3a – 2b) = 2a(3a – 2b) + b(3a – 2b)
= 6a2 – 4ab + 3ab – 2b2 = 6a2 –ab – 2b2
Vertical Method: 3x2 + 2x – 5
4x + 2
6x2 + 4x – 10
12x3 + 8x2 – 20x____
12x3 + 14x2 – 16x – 10
5.2
6
Bigger Multiplications
Leave Missing
Variable Space
( 5 x x 4 )( 2 x 3 x 6 )
3
2
5x
Leave
Margin
Space
30 x
15 x
10 x
2x 3x 6
2
6 x 24
3
3 x 12 x
4
2
2x
5
x4
3
8x
3
2
10 x 15 x 28 x 11 x 6 x 24
5
4
3
2
5.2
7
FOIL: Used to Multiply Two Binomials
5.2
8
Multiplying 3 or more Polynomials
Use same technique as you used for numbers:
Multiply any 2 together and simplify the temporary product
Multiply that temporary product times any remaining
polynomial and simplify
-2r(r – 2s)(5r – s)
= -2r(5r2 – 11rs + 2s2)
= -10r3 + 22r2s – 4rs2
5.2
9
The Product of Conjugates (Sum and Difference)
(A + B)(A – B) = A2 – B2
The middle term disappears Always when the binomials
are conjugates (identical, except for middle sign)
Multiplying these is easier than using FOIL!
(x + 4)(x – 4) = x2 – 42 = x2 – 16
(5 + 2w)(5 – 2w) = 25 – 4w2
(3x2 – 7)(3x2 +7) = 9x4 – 49
(-4x – 10)(-4x + 10) = 16x2 – 100
(6 + 4y)(6 – 4x) = use the foil method
36 – 24x + 24y – 16xy
5.2
10
Thought provoker:
Are these Conjugates?
(x + 2y)(3xz – 6yz)
= 3x2z – 6xyz + 6xyz – 12y2z
= 3x2z – 12y2z
Why does the middle term disappear?
Because the 2nd binomial conceals a conjugate!
Both terms contain a common factor, 3z :
(x + 2y)(3xz – 3∙2yz)
The middle term ONLY disappears when binomial
conjugates are involved.
5.2
11
Squaring a Binomial – Creates a Perfect-Square Trinomial
(A + B)(A + B) = A2 + 2AB + B2
Square the 1st term
Multiply 1st times 2nd, double it, add it
Square the 2nd term, add it
y 5 2
y 10 y 25
2
2 x 3 y 2
1
2
a 3b
4 x 12 xy 9 y
4 2
0 . 3 x 7 y
5.2
2
2
1
4
2
a 3 ab 9 b
2
4
8
0 . 09 x 4 . 2 xy 49 y
2
12
2
Squaring a Binomial – Creates a Perfect-Square Trinomial
(A – B)(A – B) = A2 – 2AB + B2
Differences:
Almost the
same
Square the 1st term
Multiply 1st times 2nd, double it, subtract it
Square the 2nd term, add it
y 5 2
y 10 y 25
2
3 x 8 y 2
1
5
a 5b
9 x 48 xy 64 y
3 2
2
0 . 6 x 0 . 2 y
5.2
1
25
2
2
a 2 ab 25 b
2
3
6
0 . 36 x 0 . 24 xy 0 . 04 y
2
13
2
Examples - board
( y 1)( 1 y )
( x 3 y )( x 3 xy 9 y )
3
2
2
(a 2b )
2
( 5 y 4 3 x )( 5 y 4 3 x )
5.2
14
Function Notation
If f(x) = x2 – 4x + 5 find:
a ) f (a ) 4
c) f (a h) f (a )
a 4a 5 4
(a h) 4(a h) 5 a 4a 5
a 4a 9
a 2 ah h 4 a 4 h 5 a 4 a 5
2
2
2
2
2
2
2
2 ah h 4 h
2
b ) f ( a 3)
( a 3) 4 ( a 3) 5
2
a 6 a 9 4 a 12 5
2
a 2a 2
2
5.2
15
Next …
Section 5.3 Intro to Factoring
Common Factors, Factoring by Grouping
5.2
16