Transcript Chapter 5
Chapter 5 AC-to-AC Converters βIntroduction to Modern Power Electronicsβ, 2nd Ed., John Wiley 2010 by Andrzej M. Trzynadlowski 1 Single-phase ac voltage controller T1 ii = io io T2 SOURCE vo vi LOAD Fig. 5.1 Chapter 5 2 Waveforms of output voltage and current in a single-phase ac voltage controller (π = 30π ): (a) πΌπ = 45π , (b) πΌπ = 135π vo Vi,p vi e 0 - io 2 4 f t Vi,p (a) Vi,p vi vo e 0 - io 2 f 4 t Vi,p (b) Fig. 5.2 Chapter 5 3 Envelope of control characteristics, ππ = π(πΌπ ), of a single-phase ac voltage controller 1.0 MAGNITUDE CONTROL RATIO 0.8 0.6 0.4 0.2 0.0 0 30 60 90 120 150 180 FIRING ANGLE (deg) Fig. 5.3 Chapter 5 4 Operation of a single-phase ac voltage controller with (a) single-pulse gate signal, (b) multipulse gate signal vo io ig2 ig1 0 ig2 ig1 2 4 t f vi (a) vi = vo ig1 i o 0 ig2 ig1 2 ig2 4 f t (b) Fig. 5.4 Chapter 5 5 Definition of a control angle vi vo io e 0 f 2 t ' Fig. 5.5 Chapter 5 6 Envelope of control characteristics, ππ = π(πΌπβ² ), of a single-phase ac voltage controller 1.0 MAGNITUDE CONTROL RATIO 0.8 0.6 0.4 0.2 0.0 0 30 60 90 120 150 180 CONTROL ANGLE (deg) Fig. 5.6 Chapter 5 7 Fully controlled controller three-phase ac voltage SUPPLY LINE A B C iA iB TA va iC TB vb vc TC LOAD Fig. 5.7 Chapter 5 8 Voltage and current distribution in a fully controlled three-phase ac voltage controller: (a) two triacs conducting, (b) three triacs conducting iA TA vA vA vB vB vC vC -iB TB iB iA TC TA TB iC TC 1 _v 2 BA 1 _ v 2 AB vAB vA vB vC (b) (a) Fig. 5.8 Chapter 5 9 Output voltage waveforms in a fully controlled three-phase ac voltage controller: (a) πΌπ = 0π , (b) πΌπ = 30π (R load) 1 a 1 b 1 c vA= va vB vC 0 0 30 60 90 120 150 180 210 240 270 300 330 360 f t (deg) (a) a 0 b c 1 1 1 0 1 2 vAB 0 vA va -1 vAC 2 0 0 30 f 60 90 120 150 180 210 240 270 300 330 360 t (deg) (b) Fig. 5.9 Chapter 5 10 Polarities of output voltages and currents in a fully controlled three-phase ac voltage controller in mode 2 before firing triac TA (solid line) and following the firing (broken line) (+) PHASE A 0 (-) POLARITY (+) 0 PHASE B (-) PHASE C (+) 0 (-) 0 60 90 FIRING ANGLE (deg) Fig. 5.10 Chapter 5 11 Output voltage waveforms in a fully controlled three-phase ac voltage controller: (a) πΌπ = 75π , mode 2, (b) πΌπ = 120π , ππππ 3 a 1 b 0 c 0 1 1 1 2 1 2 0 vAB vA va vAC 0 90 60 30 0 120 150 180 210 240 270 300 330 360 f t (deg) (a) 1 a b c 0 0 1 0 -1 2 1 vAB vA 1 2 vAC va 0 0 30 60 90 120 150 180 210 240 270 300 330 360 f t (deg) (b) Fig. 5.11 Chapter 5 12 Envelope of control characteristics, ππ = π(πΌπ ), of a fully controlled three-phase ac voltage controller 1.0 MAGNITUDE CONTROL RATIO 0.8 0.6 0.4 0.2 0.0 0 30 60 90 120 150 180 FIRING ANGLE (deg) Fig. 5.12 Chapter 5 13 Envelope of control characteristics, ππ = π(πΌπβ² ), of a fully controlled three-phase ac voltage controller 1.0 MAGNITUDE CONTROL RATIO 0.8 0.6 0.4 0.2 0.0 0 30 60 90 120 150 180 CONTROL ANGLE (deg) Fig. 5.13 Chapter 5 14 Three-phase ac voltage controllers connected before the load: (a) half-controlled, (b) deltaconnected A A B B C C (a) (b) Fig. 5.14 Chapter 5 15 Three-phase ac voltage controllers connected after the load: (a) wye-connected, (b) deltaconnected A A B B C C (a) (b) Fig. 5.15 Chapter 5 16 Three-phase four-wire ac voltage controller A B C N Fig. 5.16 Chapter 5 17 Single-phase ac chopper with an input filter S1 i i' ii io S2 S3 vi S4 vo Fig. 5.17 Chapter 5 18 Waveforms of voltages and currents in a singlephase ac chopper: (a) output voltage and current, (b) input voltage and current after the input filter, and the fundamental output current vo io t 0 (a) vi ii,1 ii t 0 1 (b) Fig. 5.18 Chapter 5 19 Control characteristic of an ac chopper 1.0 MAGNITUDE CONTROL RATIO 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 MODULATION INDEX Fig. 5.19 Chapter 5 20 Wye-connected three-phase ac choppers: (a) three-wire, (b) four wire A A B B C C N S2 S3 S1 S2 S4 S3 S1 S4 (b) (a) Fig. 5.20 Chapter 5 21 Delta-connected three-phase ac chopper S1 S4 S2 S3 Fig. 5.21 Chapter 5 22 Changes in the firing angle in a cycloconverter 180 M=1 150 M=0.75 M=0.5 M=0.25 90 M=0 f (deg) 120 60 30 0 0 60 120 180 ot 240 300 360 (deg) Fig. 5.22 Chapter 5 23 Output voltage waveforms in a six-pulse cycloconverter: (a) M = 1, (b) M = 0.5 (π ππ = 5) vo1 ot 0 (a) vo1 ot 0 (b) Fig. 5.23 Chapter 5 24 Three-phase three-pulse cycloconverter Fig. 5.24 Chapter 5 25 Three-phase six-pulse cycloconverter with isolated phase loads Fig. 5.25 Chapter 5 26 Three-phase six-pulse cycloconverter interconnected phase loads with Fig. 5.26 Chapter 5 27 Three-phase to three-phase (3ο-3ο) matrix converter SUPPLY LINE INPUT FILTER iA iB iC vA SAa MATRIX CONVERTER SAb SAc A vB SBa SBb SBc vC a SCa SCb SCc B C LOAD b c ia ib ic va vb vc vn Fig. 5.27 Chapter 5 28 Arrangement of 3ο-1ο and 1ο-3ο matrix converters, equivalent to a 3ο-3ο matrix converter a Idc CONV 1 SAP SBP SCP SAN SBN SCN A B Vdc c b CONV 2 SPa SPb SPc SNa SNb SNc P N C Fig. 5.28 Chapter 5 29 State AAB as realized by activation od switches in (a) virtual rectifier and inverter, (b) matrix converter A B C P SAP SBP SCP SAN SBN SCN N SPa SPb SPc SNa SNb SNc b a c (a) B A C SAa SBa SCa SAb SBb SCb SAc SBc SCc a b c (b) Fig. 5-29 Chapter 5 30 Reference current vector in the vector space of input currents of the virtual rectifier jq j 3 IDC I 0PN I NP0 III II i* I P0N I* ο‘ ο’ IV _3 I 2 DC d I I N0P VI V IPN0 I0NP Fig. 5-30 Chapter 5 31 Reference voltage vector in the vector space of line-to-neutral output voltages of the virtual inverter jq VNPN III VNPP v* _ V3 j_ 2 VDC ο‘ VPPN II ο’ I V* VDC VI IV d VPNN V VPNP VNNP Fig. 5-31 Chapter 5 32 TABLE 5.1 Switching Pattern for 3Ξ¦-3Ξ¦ Matrix Converter with Space Vector PWM Switching Subcycle 1 2 3 4 5 6 7 8 9 Rectifier State XI XI YI YI ZI YI YI XI XI Inverter State XV YV YV XV ZV XV YV YV XV Chapter 5 ππ π»ππ dXIdXV/2 dXIdYV/2 dYIdYV/2 dYIdXV/2 1 β (dXI + dYI )( dXV + dYV) dYIdXV/2 dYIdYV/2 dXIdYV/2 dXIdXV/2 33 Output voltage and current waveforms in a 3ο3ο matrix converter: (a) N = 48, m = 0.7, π ππ = 2.8, (b) N = 12, m = 0.35, π ππ = 0.7 vo 0 ot io (a) vo o t io (b) Fig. 5-32 Chapter 5 34 Bidirectional semiconductor power switches: (a) two IGBTs and two diodes, (b) one IGBT and four diodes (b) (a) Fig. 5-33 Chapter 5 35 TABLE 5.2 Switching Pattern for the Example Matrix Converter Switching Subcycle 1 2 3 4 5 6 7 8 9 Rectifier State 0PN 0PN NP0 NP0 Z00 or 0Z0 NP0 NP0 0PN 0PN Inverter State PPN NPN NPN PPN PPP PPN NPN NPN PPN ππ π»ππ 0.156 0.035 0.009 0.057 0.486 0.057 0.009 0.035 0.156 TABLE 5.3 Activation of Switches in the Example Matrix Converter Switching Subcycle 1 2 3 4 5 6 7 8 9 State of Matrix Converter BBC CBC ABA BBA BBB BBA ABA CBC BBC Chapter 5 Activated Switches SBa, SBb, SCc SCa, SBb, SCc SAa, SBb, SAc SBa, SBb, SAc SBa, SBb, SBc SBa, SBb, SAc SAa, SBb, SAc SCa, SBb, SCc SBa, SBb, SCc Duration (µs) 31.2 7.0 1.8 11.4 97.2 11.4 1.8 7.0 31.2 36 Switching signals for individual switches in a matrix converter in Example 5.4 SAa SAb SAc S Ba SBb SBc SCa SCb SCc 0 50 100 150 200 TIME, s Fig. 5-34 Chapter 5 37