Transcript Chapter 7
Chapter 7 DC-to-AC Converters “Introduction to Modern Power Electronics”, 2nd Ed., John Wiley 2010 by Andrzej M. Trzynadlowski 1 Voltage-source inverter supplied form a diode rectifier DC LINK INVERTER LOAD AC LINE RECTIFIER Fig. 7.1 Chapter 7 2 Single-phase voltage-source inverter ii SA DA SB DB SB' DB' io Vi vo SA' DA' Fig. 7.2 Chapter 7 3 TO INVERTER FROM RECTIFIER Circuit diagram of a Z-source Fig. 7.3 Chapter 7 4 States, switching variables, and waveforms of output voltage and current in a single-phase VSI in the basic square-wave mode STATE: 2 1 2 1 a 0 t 0 Vi 0 - t b vo io 4 2 t 3 Vi Fig. 7.4 Chapter 7 5 States, switching variables, and waveforms of output voltage and current in a single-phase VSI in the optimal square-wave mode STATE: 2 3 1 0 2 3 1 0 a 0 b t 0 Vi vo io 2 0 Vi 4 t 3 0.81 - t Fig. 7.5 Chapter 7 6 Waveforms of output voltage and current in a single-phase VSI in the PWM mode, N = 10: (a) m = 1, (b) m = 0.5 Vi vo io t 0 - Vi (a) Vi vo io t 0 - Vi (b) Fig. 7.6 Chapter 7 7 Waveforms of output voltage and current in a single-phase VSI in the PWM mode, N = 20: (a) m = 1, (b) m = 0.5 Vi vo io t 0 - Vi (a) Vi vo io t 0 - Vi (b) Fig. 7.7 Chapter 7 8 Harmonic spectra of output voltage in a singlephase VSI: (a) basic square-wave mode, (b) optimal square-wave mode 10 AMPLITUDE (pu) 1 0.1 0.01 0.001 0 20 40 60 80 100 80 100 HARMONIC NUMBER (a) 10 AMPLITUDE (pu) 1 0.1 0.01 0.001 0 20 40 60 HARMONIC NUMBER (b) Fig. 7.8 Chapter 7 9 Harmonic spectra of output voltage in a singlephase VSI in the PWM mode (m = 1): (a) N = 10, (b) N = 20 10 AMPLITUDE (pu) 1 0.1 0.01 0.001 0 20 40 60 80 100 80 100 HARMONIC NUMBER (a) 10 AMPLITUDE (pu) 1 0.1 0.01 0.001 0 20 40 60 HARMONIC NUMBER (b) Fig. 7.9 Chapter 7 10 Harmonic spectra of output current in a singlephase VSI: (a) basic square-wave mode, (b) optimal square-wave mode 10 AMPLITUDE (pu) 1 0.1 0.01 0.001 0 20 40 60 80 100 80 100 HARMONIC NUMBER (a) 10 AMPLITUDE (pu) 1 0.1 0.01 0.001 0 20 40 60 HARMONIC NUMBER (b) Fig. 7.10 Chapter 7 11 Harmonic spectra of output current in a singlephase VS in the PWM mode (m = 1): (a) N = 10, (b) N = 20 10 AMPLITUDE (pu) 1 0.1 0.01 0.001 0 20 40 60 80 100 80 100 HARMONIC NUMBER (a) 10 AMPLITUDE (pu) 1 0.1 0.01 0.001 0 20 40 60 HARMONIC NUMBER (b) Fig. 7.11 Chapter 7 12 Waveforms of input current in a single-phase VSI: (a) optimal square-wave mode, (b) PWM mode (m = 1, N = 20) ii t 0 (a) ii t 0 (b) Fig. 7.12 Chapter 7 13 Harmonic spectra of input current in a single phase VSI: (a) optimal square-wave mode, (b) PWM mode (m = 1, N = 20) 1 AMPLITUDE (pu) 0.1 0.01 0.001 0.0001 0 10 20 30 40 50 40 50 HARMONIC NUMBER (a) 1 AMPLITUDE (pu) 0.1 0.01 0.001 0.0001 0 10 20 30 HARMONIC NUMBER (b) Fig. 7.13 Chapter 7 14 Three-phase voltage-source inverter ii SA DA SB DB SC DC SA' DA' SB' DB' SC' DC' Vi vAB vBC A B iA vAN vCA C iB vBN iC vCN N Fig. 7.14 Chapter 7 15 TABLE 7.1 States and Voltages of the Three-Phase Voltage-Source Inverter ______________________________________________________________________________ State abc 𝑣𝐴𝐵 𝑉𝑖 𝑣𝐵𝐶 𝑉𝑖 𝑣𝐶𝐴 𝑉𝑖 𝑣𝐴𝑁 𝑉𝑖 𝑣𝐵𝑁 𝑉𝑖 𝑣𝐶𝑁 𝑉𝑖 ____________________________________________________________________________________________________________________ 0 000 0 0 0 0 0 0 1 001 0 -1 1 -1/3 -1/3 2/3 2 010 -1 1 0 -1/3 2/3 -1/3 3 011 -1 0 1 -2/3 1/3 1/3 4 100 1 0 -1 2/3 -1/3 -1/3 5 101 1 -1 0 1/3 -2/3 1/3 6 110 0 1 -1 1/3 1/3 -2/3 7 111 0 0 0 0 0 0 ______________________________________________________________________________ Chapter 7 16 Switching variables and waveforms of output voltages in a three-phase VSI in the squarewave mode STATE: 5 4 6 2 3 1 a t b t c t vAB Vi t vBC t vCA t vAN t vBN t vCN t 0 _1 3 _4 3 _2 3 _5 3 2 Fig. 7.15 Chapter 7 17 Waveforms of output voltage (line-to-neutral) and current in a three-phase VSI in the squarewave mode (RL load) _2 Vi 3 vAN iA 0 2 3 4 t 2 - _ Vi 3 Fig. 7.16 Chapter 7 18 Waveforms of input current in a three-phase VSI in the square-wave mode (RL load) ii t 0 2 Fig. 7.17 Chapter 7 19 Switching variables and waveforms of output voltages in a three--phase VSI in the PWM mode a t b t c t vAB t vBC t vCA t vAN t vBN t vCN t 0 2 Fig. 7.18 Chapter 7 20 Waveforms of the output voltage and current in an RL load of a three-phase VSI in the PWM mode (a) load angle of 30𝑜 , (b) load angle of 60𝑜 _2 Vi 3 vAN iA t 0 2 - _ Vi 3 (a) _2 Vi 3 vAN iA t 0 2 - _ Vi 3 (b) Fig. 7.19 Chapter 7 21 Waveforms of input current in a three-phase VSI in the PWM mode (a) load angle of 30𝑜 , (b) load angle of 60𝑜 ii t 0 (a) ii t 0 (b) Fig. 7.20 Chapter 7 22 Carrier-comparison PWM technique (N = 12, m = 0.75) rA y rB rC t a t b t c t 0 2 Fig. 7.21 Chapter 7 23 Third-harmonic modulating components at m = 1 function and its 1st 1 F(1, t ) 3 rd 2 0 t -1 Fig. 7.22 Chapter 7 24 Voltage space vector plane of a three-phase VSI (per-unit) jq V2 III _ 2_ V3 v* V6 1 II I _ 2_ V3 m V3 VI IV d V4 V V1 -1 V5 Fig. 7.23 Chapter 7 25 High-quality space sequence STATE: 1 X (4) Y (6) 100 110 a Z1 (7) Y (6) X (4) Z2 (0) 111 110 100 000 T_X 2 T_Z 2 0 b 1 0 c 1 0 T_X 2 T_Y 2 T_Z 2 T_Y 2 Tsw Fig. 7.24 Chapter 7 26 High-efficiency space sequence STATE: 1 X (4) Y (6) 100 110 a Z (7) Y (6) X (4) 111 110 100 0 b 1 0 c 1 0 T_X 2 T_Y 2 TZ T_Y 2 T_X 2 Tsw Fig. 7.25 Chapter 7 27 Switching pattern with half- and quarter-wave symmetries a 1 0 0 _1 2 3 _ 2 t 2 Fig. 7.26 Chapter 7 28 Optimal primary switching angles as functions of the magnitude control ratio (K = 5) 90 OPTIMAL PRIMARY SWITCHIN 75 60 45 30 15 0 0.0 0.2 0.4 0.6 0.8 1.0 MAGNITUDE CONTROL RATIO Fig. 7.27 Chapter 7 29 Harmonic spectrum of line-to-neutral voltage with the harmonic-elimination technique (K = 5, M = 1) 1 AMPLITUDE (pu) 0.1 0.01 0.001 0.0001 0 20 40 60 80 100 HARMONIC NUMBER Fig. 7.28 Chapter 7 30 Switching patterns and output voltage and current waveforms; (1) carrier-comparison PWM with sinusoidal reference, (2) space vector PWM with high-efficiency state sequence, (3) programmed PWM with harmonic elimination a 0 t vAN iA (1) t 0 a 0 t vAN iA (2) t 0 a 0 (3) vAN t iA t 0 0 2 Fig. 7.29 Chapter 7 31 Waveforms of output current in a three-phase VSI: (a) regular PWM, (b) random PWM iA iB iC t 0 (a) iA iB iC t 0 (b) Fig. 7.30 Chapter 7 32 Frequency spectra of the line-to-neutral output voltage in a three-phase VSI: (a) regular PWM, (b) random PWM 1 AMPLITUDE (pu) 0.1 0.01 0.001 0.0001 0 48 96 144 192 144 192 HARMONIC NUMBER (a) 1 AMPLITUDE (pu) 0.1 0.01 0.001 0.0001 0 48 96 HARMONIC NUMBER Fig. 7.31 Chapter 7 33 Comparison of random PWM techniques with the regular PWM SAMPLING/SWITCHINGCYCLES n n+1 n+2 n+4 n+3 ... t PWM SAMPLING/SWITCHINGCYCLES n n+1 n+3 n+2 n+4 ... t RPWM T smp SAMPLINGCYCLES n n+1 n+2 n+4 n+3 ... t SWITCHINGCYCLES n-1 n n+1 n+2 n+3 n+4 ... t VD-RPWM t del T sw,n Fig. 7.32 Chapter 7 34 Hysteresis current control scheme A B N C iA iA i A* iB iB i B* iC iC i C* Fig. 7.33 Chapter 7 35 Characteristic of the hysteresis current controller a 1 0 h h 2 2 iA Fig. 7.34 Chapter 7 36 Waveforms of output currents in a VSI with hysteresis current control: (a) 20% tolerance, (b) 10% tolerance iA iB iC t 0 (a) iA iB iC t 0 (b) Fig. 7.35 Chapter 7 37 Waveform of output currents in a VSI with hysteresis current control at a rapid change in the magnitude, frequency, and phase of the reference current iA t 0 Fig. 7.36 Chapter 7 38 Space vector version of the hysteresis current control scheme A B N C id i d* id iq i q* a zd b c SWITCHING TABLE zq iq iC dq abc iA Fig. 7.37 Chapter 7 39 Characteristic of a current controller for the space vector version of the hysteresis current control scheme zd 1 h 2 h 0 4 h h 4 2 id -1 Fig. 7.38 Chapter 7 40 Characteristic of a current controller for the space vector version of the hysteresis current control scheme RAMP GENERATOR y CONTROLLER iA iA* iA COMPARATOR zA a iA Fig. 7.39 Chapter 7 41 Waveforms of the output current in a VSI with the ramp comparison current control: (a) 𝑓𝑟 𝑓1 = 10, (b) 𝑓𝑟 𝑓1 = 20 iA iB iC t 0 (a) iA iB iC t 0 (b) Fig. 7.40 Chapter 7 42 Current-regulated delta modulation scheme for a current-controlled VSI iA iA* S&H a iA Fig. 7.41 Chapter 7 43 Linear current control scheme for a VSI A B N C LINEAR CONTROLLERS id i d* id iq i q* a v*d v*q b c PULSE WIDTH MODULATOR iq iC dq abc iA Fig. 7.42 Chapter 7 44 Current-source inverter supplied from a controlled rectifier DC LINK INVERTER LOAD AC LINE RECTIFIER CURRENT FEEDBACK Fig. 7.43 Chapter 7 45 Three-phase current-source inverter ii SA SB SC SA' SB' SC' Ii vAB vBC A B iA vAN vCA iB vBN C iC vCN N Fig. 7.44 Chapter 7 46 Switching variables in a three-phase CSI in the square-wave mode a t a' t b t b' t c t c' t 0 _1 3 _4 3 _2 3 _5 3 2 Fig. 7.45 Chapter 7 47 Idealized waveforms of output currents in a threephase CSI in the square-wave mode iA Ii t iB t iC t iAB t iBC t iCA t 0 _1 3 _4 3 _2 3 _5 3 2 Fig. 7.46 Chapter 7 48 Waveforms of output voltage and current in a threephase CSI in the square-wave mode: (a) RL load, (b) LE load vAN t 0 iA (a) vAN iA t 0 (b) Fig. 7.47 Chapter 7 49 Three-phase PWM current-source inverter RECTIFIER DC LINK INVERTER A i'A iA LOAD AC LINE i C,AB B i'B iB N iC,BC i C,CA C i'C iC CURRENT FEEDBACK Fig. 7.48 Chapter 7 50 Carrier-comparison method for the PWM CSI Fig. 7.49 Chapter 7 51 Optimal switching pattern for the PWM CSI with two primary switching angles Fig. 7.50 Chapter 7 52 Waveforms of the output current, capacitor current, and output voltage in a three-phase PWM CSI (wye-connected RL load, P = 9) iA' t 0 iA t 0 iC,AB t 0 vAN t 0 0 2 Fig. 7.51 Chapter 7 53 Generic five-level inverter S1 V1 C1 Vi 4 S2 V2 C2 Vi Vi 4 V3 C3 Vi 4 S3 S4 V4 C4 V5 vo Vi 4 S5 Fig. 7.52 Chapter 7 54 Half-bridge voltage-source inverter ii Vi io vo Fig. 7.53 Chapter 7 55 Three-level neutral-clamped inverter ii S1 D1 S2 D2 S3 D3 D5 C1 Vi G C2 vBN D6 S4 D4 vBC vAB A B iA iB vAN vBN vCA C iC vCN N Fig. 7.54 Chapter 7 56 Voltage space vectors of a three-level neutralclamped inverter V6 V7 V8 jq _ _ V3 2 V15 V3 = V16 V24 V12 = V25 V21 V9 = V22 V4 = V17 V18 1 -1 V5 V1 = V14 V2 V10 = V23 _ V3 -j _ 2 V11 d V19 V20 Fig. 7.55 Chapter 7 57 States, switching variables, and waveforms of output voltage in a three-level neutral-clamped inverter in the square-wave mode STATE: 18 21 24 15 6 7 8 5 2 11 20 19 a t b t c t vAB Vi t vBC t vCA t vAN t vBN t vCN t 0 2 Fig. 7.56 Chapter 7 58 Waveforms of output voltage and current in a threelevel neutral-clamped inverter in the square-wave mode _2 Vi 3 vAN iA 0 2 3 4 t 2 - _ Vi 3 Fig. 7.57 Chapter 7 59 One phase of a multilevel cascaded H-bridge inverter Fig. 7.58 Chapter 7 60 Switched network for illustration of the operating principle of a resonant dc link R ii L iC Vi C iS iD S D vo Io Fig. 7.59 Chapter 7 61 Waveforms of voltage and current in the resonant dc link g t 0 ii I2 Io t 0 i S 0 iD t0 0 t t iC t 0 vo Vi t1 t2 t3 t 0 0 Fig. 7.60 Chapter 7 62 Three-phase resonant dc link inverter with an active clamp C cl D S L Vi C A B C N Fig. 7.61 Chapter 7 63 Waveforms of line-to-line output voltages in a resonant dc-link inverter vAB t 0 vBC t 0 vCA t 0 Fig. 7.62 Chapter 7 64 Auxiliary resonant commutated pole inverter: (a) one phase with the auxiliary circuit, (b) the entire inverter Ci D1 S1 Cr S2 Cr AC Lr Vi S Lf Ci D2 A (a) AC AC AC B A C (b) Fig. 7.63 Chapter 7 65 Idealized line-to-neutral voltage and line current waveforms in a VSI in the square-wave mode vAN iSA a t 0 iSA' 0 (a) vAN iSA iDA' a t 0 iSA' iDA 0 (b) Fig. 7.64 Chapter 7 66 Block diagram of a photovoltaic utility interface PV ARRAY INVERTER TRANSFORMER DIODE RECTIFIER CONTROLLED RECTIFIER FILTER GRID DC LINK Fig. 7.65 Chapter 7 67 Block diagram of an active power filter Fig. 7.66 Chapter 7 68 Waveforms of voltage and current in an active power filter Fig. 7.67 Chapter 7 69 UPS System STATIC SWITCH RECTIFIER DC LINK INVERTER LOAD FILTER GRID LOAD LINE FILTER BATTERY Fig. 7.68 Chapter 7 70 Block diagram of an ac drive system with scalar speed control RECTIFIER INVERTER DC LINK MOTOR AC LINE SPEED SENSOR LOAD * v* p VOLTAGE CONTROLLER *syn * M *sl SLIP CONTROLLER * M M M Fig. 7.69 Chapter 7 71 Use of the modular frequency changer of Figure 2.24 in an ac drive: (a) system with a braking resistor, (b) system with a step-up chopper BRAKING RESISTOR INVERTER AC LINE RECTIFIER TO MOTOR (a) RECTIFIER INVERTER AC LINE BOOST INDUCTOR (b) TO MOTOR Fig. 7.70 Chapter 7 72 PWM rectifier-inverter cascades for bidirectional power flow in ac motor drives: (a) current-type rectifier, inductive dc link, and current-source inverter, (b) voltage-type-rectifier, capacitive dc link, and voltage-source inverter RECTIFIER DC LINK INVERTER LINE FILTER AC LINE MOTOR (a) RECTIFIER DC LINK LINE FILTER INVERTER AC LINE MOTOR (b) Fig. 7.71 Chapter 7 73 Switching pattern of the inverter in Example 7.2 STATE: 1 X (1) Y (5) 001 101 a Z (7) Y (5) X (1) 111 101 001 t ( s) 0 b 1 t ( s) 0 c 1 t ( s) 0 0 32 157.5 92.5 218 250 Fig. 7.72 Chapter 7 74 Per-unit voltage vectors of the three-level inverter in Example 7.3 jq V24 j 23 V15 j 43 V12 = V25 V21 v* 0 V9 = V22 0.5 V18 1 d Fig. 7.73 Chapter 7 75