Transcript Chapter 4
“Introduction to Modern Power Electronics”, 2nd Ed., John Wiley 2010 by Andrzej M. Trzynadlowski 1 SUPPLY LINE A B C N iA DA iC iB DB DC io vo LOAD Fig. 4.1 Chapter 4 2 vAN vBN vCN 0 iB = io vBA vBC DB io vo = vBN vBN Fig. 4.2 Chapter 4 3 VLN,p vo io t 0 2 - VLN,p vC vA vB Fig. 4.3 Chapter 4 4 Fig. 4.4 Chapter 4 5 A B C iC iB iA io DA DB R DC vo DA' DB' L DC' E Fig. 4.5 Chapter 4 6 vA vB vC iA = i o -i B = i o vA DA io R vAC vAB vo = vAB vAB L vCB DB' E vB Fig. 4.6 Chapter 4 7 Im V^CA V^CB ^ VCN -V^BN -V^AN ^ ^ VAB VBA Re ^ VBN ^ VAN ^ -VCN V^AC ^ VBC Fig. 4.7 Chapter 4 8 vo VLL,p io t 0 2 - VLL,p vBA vCA vCB vAB vAC vBC Fig. 4.8 Chapter 4 9 ^ V C SUPPLY LINE A ^ V F B ^ V D C ^ V A D E F ^ V B ^ V E io vo LOAD Fig. 4.9 Chapter 4 10 1.00 DISCONTINUOUS CONDUCTION LOAD EMF COEFFICIENT 0.95 0.90 CONTINUOUS CONDUCTION 0.85 0.80 0 15 30 45 60 75 90 LOAD ANGLE (deg) Fig. 4.10 Chapter 4 11 vo E io 0 c t e vBA vCA 2 vCB vAB vAC vBC Fig. 4.11 Chapter 4 12 iA,1 Io,dc iA 5 _ 3 0 2 t _2 3 - Io,dc Fig. 4.12 Chapter 4 13 10 AMPLITUDE (pu) 1 0.1 0.01 0.001 0 20 40 60 80 100 HARMONIC NUMBER Fig. 4.13 Chapter 4 14 RECTIFIER POWER SYSTEM FILTER 1 (5th harmonic) FILTER 2 (7th harmonic) FILTER 3 (11th & 13th harmonics) Fig. 4.14 Chapter 4 15 A B C iC iB iA io TA TB R TC vo TA' TB' L TC' E Fig. 4.15 Chapter 4 16 Fig. 4.16 Chapter 4 17 vo io 0 t f vBA vCA 2 vCB vAB vAC vBC Fig. 4.17 Chapter 4 18 1.00 MAGNITUDE CONTROL RATIO 0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 -1.00 0 30 60 90 120 150 180 FIRING ANGLE (deg) Fig. 4.18 Chapter 4 19 A B C io R Vo,dc L E Fig. 4.19 Chapter 4 20 io 0 t f vBA vCA vo 2 vCB vAB vAC vBC Fig. 4.20 Chapter 4 21 180 INFEASIBLE FIRING ANGLE (deg) 150 120 90 60 FEASIBLE 30 0 -1.0 -0.5 0.0 0.5 1.0 LOAD EMF COEFFICIENT Fig. 4.21 Chapter 4 22 1.00 o 0.75 ISCONTINUOUS f=0 o f=30 o f=60 D 0.25 0.00 o f=90 -0.50 f=120 o f=150 o ONTINUOUS -0.25 -0.75 C LOAD EMF COEFFICIENT 0.50 -1.00 0 15 30 45 60 75 90 LOAD ANGLE (deg) Fig. 4.22 Chapter 4 23 vo E io 0 f t e vBA vCA 2 vCB vAB vAC vBC (a) io 0 f t e 2 E vo vBA vCA vCB vAB vAC vBC (b) Fig. 4.23 Chapter 4 24 iA,1 Io,dc 0 iA t f _5 3 _2 3 2 - Io,dc Fig. 4.24 Chapter 4 25 vAB vAC vBC vBA vCA vCB Rs Rs Rs Rs Rs Rs Ls Ls Ls Ls Ls Ls E vo L R T1 T2 i1 i2 io Fig. 4.25 Chapter 4 26 vAB vo i1 i2 0 f f+ ii t 1 (vAB+v ) _ CB 2 vCB Fig. 4.26 Chapter 4 27 vo io 0 t f vBA vCA 2 vCB vAB vAC vBC (a) io 0 t f 2 vo vBA vCA vCB vAB vAC vBC (b) Fig. 4.27 Chapter 4 28 vab t 0 2 Fig. 4.28 Chapter 4 29 Vo,dc INVERTER RECTIFIER POSITIVE VOLTAGE POSITIVE VOLTAGE II I I o,dc III IV INVERTER NEGATIVE VOLTAGE RECTIFIER NEGATIVE VOLTAGE Fig. 4.29 Chapter 4 30 A B C io vo i'o v'o Fig. 4.30 Chapter 4 31 A1 B1 C1 A2 B2 C2 io1 io vo1 vo vo2 io2 Fig. 4.31 Chapter 4 32 A B C iA iB iC io TA1 TA2' TB1 TB2' TC1 R TC2' vo TA1' TA2 TB1' TB2 TC1' TC2 L E Fig. 4.32 Chapter 4 33 A B C i o + i cr i o + i cr i cr i o + i cr L1 TA1 vo1 TB1' i cr icr R L2 TA2' io vo L vo2 TC2 E RCT1 RCT2 Fig. 4.33 Chapter 4 34 vo1 0 f1 t f2 2 vo2 vBA vCA vCB vAB vAC vBC Fig. 4.34 Chapter 4 35 vo icr t 0 2 Fig. 4.35 Chapter 4 36 vo icr t 0 2 Fig. 4.36 Chapter 4 37 A B C io + i cr1 io + i cr2 icr1 io + i cr1 L1 TA1 vo1 TB1' RCT1 icr2 icr1 R L2 io vo L vo2 TA2' TC2 E io + i cr2 L3 L4 icr2 RCT2 Fig. 4.37 Chapter 4 38 i i,1 Lf i i,h Cf ii PWM RECTIFIER vo Fig. 4.38 Chapter 4 39 x1 t (s) STATE: 2 0 3 2 0 x2 t ( s) 0 50 90 110 150 200 Fig. 4.39 Chapter 4 40 q iA A' C iC B iB d iB B' iC C' A iA Fig. 4.40 Chapter 4 41 s jq Im C A' ^ IA C ^ IC B B A d Re B' C' ^ IB A (a) (b) Fig. 4.41 Chapter 4 42 jq s qs s j s d ds Fig. 4.42 Chapter 4 43 jq IY dY I Y I* i* I*ma x I IX d dX IX Fig. 4.43 Chapter 4 44 jq jQ v jvq D jv Q vD t vd d Fig. 4.44 Chapter 4 45 SA Io iA ia v BN i B vCN SC ib iC LOAD vAN SB Vo ic SA' SB' SC' Fig. 4.45 Chapter 4 46 jq j 3 Io I3 II III I4 i* I2 IV _3 I 2 o d I I5 VI V I I1 I6 Fig. 4.46 Chapter 4 47 2 STATE: 3 9 3 2 9 a 0 b 0 c 1 a' 0 b' 0 c' 1 0.0 0.2 0.4 0.6 0.8 1.0 t / Tsw Fig. 4.47 Chapter 4 48 RECTIFIER vA LOAD vB a...c' VOLTAGE VECTOR CALCULATOR SVPWM MODULATOR m Fig. 4.48 Chapter 4 49 vo io t 0 (a) vo io t 0 (b) Fig. 4.49 Chapter 4 50 Fig. 4.50 Chapter 4 51 io t 0 vo (a) ia ia,1 t 0 (b) Fig. 4.51 Chapter 4 52 10 AMPLITUDE (pu) 1 0.1 0.01 0.001 0 20 40 60 80 100 80 100 HARMONIC NUMBER (a) 10 AMPLITUDE (pu) 1 0.1 0.01 0.001 0 20 40 60 HARMONIC NUMBER (b) Fig. 4.52 Chapter 4 53 SA SB SC Io vAN A iA A' v BN B iB B' N Vo vCN C iC C' SA' SB' SC' Fig. 4.53 Chapter 4 54 Vo SA N' A' va DA' iA SA' DA 0 Fig. 4.54 Chapter 4 55 _ jq j V3 Vo jq V6' _ V2 V4' V2' _3 2 Vo d V3 j_ V 2 o V6 V3 Vo d V4 V 5' V3' V5 V1 V1' (b) (a) Fig. 4.55 Chapter 4 56 jq V2 III V3 v* _ V3 j_ 2 Vo V6 II I Vo VI IV d V4 V V5 V1 Fig. 4.56 Chapter 4 57 jq jQ i jiq ji Q vD jvq D iD v t id vd d Fig. 4.57 Chapter 4 58 RECTIFIER iA vA LOAD iB vB ABC a, b, c dq SVPWM MODULATOR id iq vd dq DQ vq dq DQ vQ* * iQ vD* iQ +- iD* - + Vo* vd* vq* iD +- Vo Fig. 4.58 Chapter 4 59 RECTIFIER iA LOAD iB vB a, b, c POWER CALCULATOR q x + Vo - vA * Vo STATE SELECTOR p vA y vB z V'o ABC dq p p* SECTOR IDENTIFIER q + p q - - vq + vd Vo q* Fig. 4.59 Chapter 4 60 TABLE 4.1 State Selection in the Voltage-Type PWM Rectifier with Direct Power Control x: y=0 y=1 z=0 z=1 z=0 z=1 1 6 2 0 0 2 4 6 4 0 3 4 6 7 7 4 5 4 5 7 5 5 4 0 0 6 1 5 1 0 Chapter 4 7 1 5 7 7 8 3 1 3 7 9 3 1 0 0 10 2 3 2 0 11 2 3 7 7 12 6 2 6 7 61 vAN v BN vCN iA iB iC t 2 Fig. 4.60 Chapter 4 62 vo io t Fig. 4.61 Chapter 4 63 ia DC MACHINE Ra va T n LOAD La Ea Fig. 4.62 Chapter 4 64 n GENERATING COUNTERCLOCKWISE II n T MOTORING CLOCKWISE I T III MOTORING COUNTERCLOCKWISE IV GENERATING CLOCKWISE Fig. 4.63 Chapter 4 65 A B C ia f < 90 io o Ra Vo,dc va Tn La Ea Fig. 4.64 Chapter 4 66 A B C ia f > 90 io o Ra Vo,dc va n La Ea T Fig. 4.65 Chapter 4 67 RCT1 L1 L2 TR1 RCT2 TR2 SYSTEM 2 SYSTEM 1 DC LINE L3 L4 Fig. 4.66 Chapter 4 68 a 0 b 0 c 1 a' 0 b' 0 c' 0 0 50 100 t 150 200 s Fig. 4.67 Chapter 4 69