North American Molecular Beam Epitaxy Conference (NAMBE),8-11-2009 Improved Regrowth of Self-Aligned Ohmic Contacts for III-V FETs Mark A.
Download ReportTranscript North American Molecular Beam Epitaxy Conference (NAMBE),8-11-2009 Improved Regrowth of Self-Aligned Ohmic Contacts for III-V FETs Mark A.
North American Molecular Beam Epitaxy Conference (NAMBE),8-11-2009 Improved Regrowth of Self-Aligned Ohmic Contacts for III-V FETs Mark A. Wistey Now at University of Notre Dame [email protected] A.K. Baraskar, U. Singisetti, G.J. Burek, M.J.W. Rodwell, A.C. Gossard University of California Santa Barbara P. McIntyre, B. Shin, E. Kim Stanford University Funding: SRC [email protected] Outline: Regrown III-V FET Contacts •Motivation for Self-Aligned Regrowth •Facets, Gaps, Arsenic Flux and MEE •MOSFET Results •Conclusion Wistey, NAMBE 2009 2 Motivation for Regrowth: Scalable III-V FETs Classic III-V FET (details vary): { Source Large Area Contacts Gap Drain Gate Large Rc Top Barrier or Oxide • Disadvantages of III-V’s Channel Bottom Barrier InAlAs Barrier { • Advantages of III-V’s Implant: straggle, short channel effects Low doping III-V FET with Self-Aligned Regrowth: High Velocity Channel Small Raccess Small Rc High mobility access regions High doping: 1013 cm-2 avoids source exhaustion Wistey, NAMBE 2009 Self-aligned, no gaps Gate High-k n+ Regrowth High barrier Channel In(Ga)P Etch Stop Bottom Barrier 2D injection avoids source starvation 5nm } Ultrathin doping layer Dopants active as-grown 3 MBE Regrowth: Bad at any Temperature? 200nm Gap • Low growth temperature (<400°C): –Smooth in far field –Gap near gate (“shadowing”) –No contact to channel (bad) Gate Source-Drain Regrowth SiO2 Metals high-k Channel • High growth temperature (>490°C): – Selective/preferential epi on InGaAs – No gaps near gate – Rough far field – High resistance Wistey, NAMBE 2009 Gate Source-Drain Regrowth Regrowth: 50nm InGaAs:Si, 5nm InAs:Si. Si=8E19/cm3, 20nm Mo, V/III=35, 0.5 µm/hr. SEMs: Uttam Singisetti 4 High Temperature MEE: Smooth & No Gaps 460C 490C Gap 540C 560C Smooth regrowth SiO2 dummy gate SiO2 dummy gate In=9.7E-8, Ga=5.1E-8 Torr Wistey, NAMBE 2009 No gaps, but faceting next to gates Note faceting: surface kinetics, not shadowing. 5 Shadowing and Facet Competition SiO2 Shen & Nishinaga, JCG 1995 Fast surface diffusion = slow facet growth Slow diffusion = rapid facet growth SiO2 [100] Slow diffusion = fast growth Fast surface diffusion = slow facet growth • Shen JCG 1995 says: Increased As favors [111] growth [100] Good fill next to gate. Wistey NAMBE 2009 • But gap persists 6 Gate Changes Local Kinetics 1. Excess In & Ga don’t stick to SiO2 Gate sidewall SiO2 or SiNx 2. Local enrichment of III/V ratio 4. Low-angle planes grow instead [100] 3. Increased surface mobility • Diffusion of Group III’s away from gate Wistey NAMBE 2009 7 Change of Faceting by Arsenic Flux • InGaAs layers with increasing As fluxes, separated by InAlAs. InAlAs InGaAs markers SiO2 Cr Increasing As flux 5x10-6 2x10-6 1x10-6 0.5x10-6 (Torr) W • Lowest arsenic flux → “rising tide fill” • No gaps near gate or SiO2/SiNx • Tunable facet competition Wistey, NAMBE 2009 Growth conditions: MEE, 540*C, Ga+In BEP=1.5x10-7 Torr, InAlAs 500-540°C MBE. 8 Control of Facets by Arsenic Flux • InGaAs:Si layers with increasing As fluxes, separated by InAlAs. Faceting [100] SiO2 InAlAs markers Increasing InGaAs As flux Cr W • Lowest arsenic flux → “rising tide fill” • No gaps near gate or SiO2/SiNx • Tunable facet competition Wistey, NAMBE 2009 Growth conditions: MEE, 540*C, Ga+In BEP=1.5x107 Torr, InAlAs 500-540°C MBE. Conformal SiO2 5x10-6 2x10-6 1x10-6 0.5x10-6 (Torr) [100] Filling SiO2 SiO2 [100] 9 Low-As Regrowth of InGaAs and InAs InGaAs InAs InAs regrowth InGaAs regrowth (top view) • No faceting near gate • Smooth far-field too • Low As flux good for InAs too. • InAs native defects are donors. Bhargava et al , APL 1997 • Reduces surface depletion. 4.7 nm Al203, 5×1012 cm-2 pulse doping In=9.7E-8, Ga=5.1E-8 Torr Wistey, NAMBE 2009 SEMs: Uttam Singisetti 10 InAs Source-Drain Access Resistance 4.7 nm Al203, InAs S/D E-FET. 740 Ω-µm • Upper limit: Rs,max = Rd,max = 370 Ω−μm. • Intrinsic gmi = 0.53 mS/ m • gm << 1/Rs ~ 3.3 mS/μm (source-limited case) ➡ Ohmic contacts no longer limit MOSFET performance. Wistey, NAMBE 2009 11 Conclusions • Reducing As flux improves filling near gate • Self-aligned regrowth: a roadmap for scalable III-V FETs –Provides III-V’s with a salicide equivalent • InGaAs and relaxed InAs regrown contacts –Not limited by source resistance @ 1 mA/µm –Results comparable to other III-V FETs... but now scalable Wistey, NAMBE 2009 12 Acknowledgements • Rodwell & Gossard Groups (UCSB): Uttam Singisetti, Greg Burek, Ashish Baraskar, Vibhor Jain... • McIntyre Group (Stanford): Eunji Kim, Byungha Shin, Paul McIntyre • Stemmer Group (UCSB): Joël Cagnon, Susanne Stemmer • Palmstrøm Group (UCSB): Erdem Arkun, Chris Palmstrøm • SRC/GRC funding • UCSB Nanofab: Brian Thibeault, NSF Wistey, NAMBE 2009 13