Electronic Materials Conference (EMC), 6-25-2009 Improved Migration-Enhanced Epitaxy for Self-Aligned InGaAs Devices Mark A.
Download ReportTranscript Electronic Materials Conference (EMC), 6-25-2009 Improved Migration-Enhanced Epitaxy for Self-Aligned InGaAs Devices Mark A.
Electronic Materials Conference (EMC), 6-25-2009 Improved Migration-Enhanced Epitaxy for Self-Aligned InGaAs Devices Mark A. Wistey University of California, Santa Barbara Now at University of Notre Dame [email protected] U. Singisetti, G. Burek, A. Baraskar, V. Jain, B. Thibault, A. Nelson, E. Arkun, C. Palmstrøm, J. Cagnon, S. Stemmer, A. Gossard, M. Rodwell University of California Santa Barbara [email protected] P. McIntyre, B. Shin, E. Kim Stanford University S. Bank University of Texas Austin Y.-J. Lee Intel Funding: SRC Outline: Channels for Future CMOS •Motivation for Self-Aligned Regrowth •Facets, Gaps, Arsenic Flux and MEE •Si doping and MEE •Scalable III-V MOSFETs •The Shape of Things to Come Wistey, EMC 2009 2 Motivation for Self-Aligned Regrowth Blanket layers AlGaAs GaAs InGaAs GaAs AlGaAs GaAs • 3D nanofabrication ? Air gap VCSEL, Dave Buell thesis Qi Xinag, ECS 2004, AMD Buried het laser, C-W Hu JECS 2007 • Integration: III-V’s on Si • Heteroepitaxy • Selective area growth • And III-V MOSFETs... Wistey, EMC 2009 • Device properties –Heat transfer –Contacts –Current blocking W.K. Liu et al., J. Crystal Growth v. 311, p. 1979 (2009) 3 Motivation for Regrowth: Scalable III-V FETs Classic III-V FET (details vary): { Source Large Area Contacts Gap Drain Gate Large Rc Top Barrier or Oxide • Disadvantages of III-V’s Channel Bottom Barrier InAlAs Barrier { • Advantages of III-V’s Implant: straggle, short channel effects Low doping III-V FET with Self-Aligned Regrowth: High Velocity Channel Small Raccess Small Rc High mobility access regions High doping: 1013 cm-2 avoids source exhaustion Wistey, EMC 2009 Self-aligned Gate High-k n+ Regrowth High barrier Channel In(Ga)P Etch Stop Bottom Barrier 2D injection avoids source starvation 5nm } Ultrathin doping layer Dopants active as-grown 4 Process Flow Prior to Regrowth Pattern gate metal Selective dry etches SiNx or SiO2 sidewalls Encapsulate gate metals Controlled recess etch (optional) Slow facet planes Not needed for depletion-mode FETs Fabrication details: U. Singisetti, PSSC 2009 Rodwell IPRM 2008 SiO2, SiNx Metals high-k Channel Surface clean UV ozone, 1:10 HCl:water dip & rinse, UHV deox (hydrogen or thermal) In(Ga)P etch stop InAlAs barrier InP substrate Regrowth Wistey, EMC 2009 5 MBE Regrowth: Bad at any Temperature? 200nm Gap • Low growth temperature (<400°C): –Smooth in far field –Gap near gate (“shadowing”) –No contact to channel (bad) Gate Source-Drain Regrowth SiO2 Metals high-k Channel • High growth temperature (>490°C): – Selective/preferential epi on InGaAs – No gaps near gate – Rough far field – High resistance Wistey, EMC 2009 Gate Source-Drain Regrowth Regrowth: 50nm InGaAs:Si, 5nm InAs:Si. Si=8E19/cm3, 20nm Mo, V/III=35, 0.5 µm/hr. SEMs: Uttam Singisetti 6 Gap-free Regrowth by MEE Migration-Enhanced Epitaxy (MEE) conditions: Wistey, MBE 2008 490-560°C (pyrometer) As flux constant ~ 1x10-6 Torr: V/III~3, not interrupted. 0.5nm InGaAs:Si pulses (3.7 sec), 10-15 sec As soak RHEED: 4x2 ==> 1x2 or 2x4 ==> 4x2 with each pulse. SEM Side View SEM Cross Section Top of gate: amorphous InGaAs SiO2 dummy gate SiO2 dummy gate InGaAs Regrowth InGaAs Regrowth Original Interface SEM: Greg Burek • Smaller gapCrosshatching—relaxation? • High Si activation (4x1019 cm-3). Wistey, EMC 2009 SEM: Uttam Singisetti •Quasi-selective growth 7 High Temperature MEE: Smooth & No Gaps 460C 490C Gap 540C 560C Smooth regrowth SiO2 dummy gate SiO2 dummy gate In=9.7E-8, Ga=5.1E-8 Torr Wistey, EMC 2009 No gaps, but faceting next to gates Note faceting: surface kinetics, not shadowing. 8 Shadowing and Facet Competition SiO2 Shen & Nishinaga, JCG 1995 Fast surface diffusion = slow facet growth Slow diffusion = rapid facet growth SiO2 [100] Slow diffusion = fast growth Fast surface diffusion = slow facet growth [100] • Shen JCG 1995 says: Increased As favors [111] growth Good fill next to gate. Wistey EMC 2009 • But gap persists 9 Gate Changes Local Kinetics 1. Excess In & Ga don’t stick to SiO2 2. Local enrichment of III/V ratio 4. Low-angle planes grow instead SiO2 [100] 3. Increased surface mobility • Diffusion of Group III’s away from gate • Solution: Override local enrichment of Group III’s Wistey EMC 2009 10 Control of Facets by Arsenic Flux SEM of single-wafer growth series varying As flux • InGaAs Experiment: • Vary As flux • InAlAs marker layers • Find best fill near gate InAlAs markers Increasing InGaAs As flux SiO2 Cr W 5x10-6 2x10-6 1x10-6 0.5x10-6 • Lowest arsenic flux → “rising tide fill” • No gaps near gate or SiO2/SiNx • Tunable facet competition Wistey, EMC 2009 11 SiNx Scalable InGaAs MOSFETs 300 nm SiO2 Cap 50 nm Cr 50 nm W Mo Mo 5 nm Al2O3 ++ n regrowth InGaAs Channel, NID n++ regrowth 3 nm InGaP Etch Stop, NID 10 nm InAlAs Setback, NID 5 nm InAlAs, Si=8x1019 cm-3 200 nm InAlAs buffer Semi-insulating InP Substrate Top view SEM Wistey, EMC 2009 Oblique view 12 SiNx Scalable InGaAs MOSFETs 300 nm SiO2 Cap 50 nm Cr 50 nm W Mo Mo 5 nm Al2O3 ++ n regrowth InGaAs Channel, NID n++ regrowth 3 nm InGaP Etch Stop, NID 10 nm InAlAs Setback, NID 5 nm InAlAs, Si=8x1019 cm-3 200 nm InAlAs buffer Semi-insulating InP Substrate Wistey, EMC 2009 • Conservative doping design: • [Si] = 4x1013 cm-2 • Bulk n = 1x1013 cm-2 >> Dit • Large setback + high doping = Can’t turn off • High Rsource > 350 Ω-µm 13 Silicon Doping in MEE Shutter Pattern (Arsenic always open) Technique Si Conventional MBE [Si] (cm-3) n (cm-3) µ (cm2V-1s-1) 8x1019 4.8x1019 847 8x1019 4.3x1019 1258 8x1019 4.2x1019 1295 16x1019 -- -- Ga Si during Group III MEE pulse Si Ga Si Si during As soak Ga Si Double Si doping Ga • Electron concentration nearly constant • Si prefers Group III site even under As-poor conditions • Increased mobility by MEE Wistey, EMC 2009 14 Regrown InAs S/D FETs 4.7 nm Al203, 5×1012 cm-2 pulse doping In=9.7E-8, Ga=5.1E-8 Torr top of gate InAs regrowth side of gate Mo S/D metal with N+ InAs underneath • InAs native defects are donors.1 • Reduces surface depletion. • Decreased As flux works for InAs too. • Gallium-free = improved selectivity in regrowth 1 Wistey, EMC 2009 Bhargava et al , APL 1997 SEM: Uttam Singisetti 15 InAs Source-Drain Access Resistance* *Wistey et al, NAMBE 2009 4.7 nm Al203, InAs S/D E-FET. TLMs corrected for metal resistance. • Total Ron = 600 Ω-μm ➡ Rs < 300 Ω−μm. • gm << 1/Rs ~ 3.3 mS/μm -- Not source-limited. InAs contacts no longer limit MOSFET performance. Wistey, EMC 2009 Slide: Uttam Singisetti, DRC 2009 16 The Shape of Things to Come Generalized Self-Aligned Regrowth Designs: Gate n+ Regrowth Recessed Raised Gate Top Barrier Top Barrier Channel Back Barrier Substrate Channel Back Barrier Substrate • Self-aligned regrowth can also be used for: • GaN HEMTs (with Nidhi in Mishra group, EMC 2009) • InGaAs HBTs and HEMTs • Selective III-V on Si — remove gaps • THz and high speed III-V electronics Wistey, EMC 2009 17 Conclusions • Reducing As flux improves filling near gate • Self-aligned regrowth: a roadmap for scalable III-V FETs –Provides III-V’s with a salicide equivalent –Can improve GaN and GaAs FETs too • Silicon doping impervious to MEE technique • InAs regrown contacts improve InGaAs MOSFETs... –Not limited by source resistance @ 1 mA/µm –Comparable to other III-V FETs... but now scalable Wistey, EMC 2009 18 Acknowledgements • Rodwell & Gossard Groups (UCSB): Uttam Singisetti, Greg Burek, Ashish Baraskar, Vibhor Jain... • McIntyre Group (Stanford): Eunji Kim, Byungha Shin, Paul McIntyre • Stemmer Group (UCSB): Joël Cagnon, Susanne Stemmer • Palmstrøm Group (UCSB): Erdem Arkun, Chris Palmstrøm • SRC/GRC funding • UCSB Nanofab: Brian Thibeault, NSF Wistey, EMC 2009 19