InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A.

Download Report

Transcript InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A.

InGaAs MOSFET with self-aligned Source/Drain
by MBE regrowth
Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K.
Baraskar, Brian J. Thibeault, C. J. Palmstrøm, A.C. Gossard, and M.J.W. Rodwell
ECE and Materials Departments
University of California, Santa Barbara, CA, USA
Yanning Sun, Edward W. Kiewra, and D.K. Sadana
IBM T J Watson Research Center, Yorktown Heights, NY, USA
2008 International Symposium on Compound Semiconductors
Rust, Germany
*[email protected]
ISCS 2008
Outline
• Motivation: III-V MOSFETs
• Approach: Self-aligned source/drain by
MBE regrowth
• FET and Contacts Results
• Conclusion
ISCS 2008
Why III-V MOSFETs
Silicon MOSFETs:
• Scaling limit beyond sub-22 nm Lg
• Non-feasibility of sub-0.5 nm equivalent oxide
thickness (EOT)
Alternative III-V channel materials
III-V materials→ lower m*→ higher velocities (veff)
Id / Wg = qnsveff
Id / Qtransit = veff / Lg
In0.53Ga0.47 As : m*  0.041 m, veff ~ vth  3.5 107 cm / s
ISCS 2008
22 nm InGaAs MOSFET
4
source contact
N+ source
Al2O3
Lg
gate
dielectric
2
InGaAs InP
metal gate
drain contact
InGaAs channel
N+ drain
InAlAs barrier
Enegy(eV)
L S/D
InAlAs
0
-2
InP substrate
Predicted drive current: ~5 mA/mm1,2
-4
-6
0
50
100
150
Y (Ang.)
200
250
Key Challenges
• 1 nm EOT gate dielectric
• 5 nm channel with back barrier
• 15 W-mm source resistance
• 5×1019 cm-3 source active doping2
1
2
Rodwell. IPRM 2008
Fischetti. IEDM 2007
ISCS 2008
InGaAs MOSFET with Source/Drain regrowth
metal gate
Process scalable to 22 nm
InGaAs quantum well
barrier
substrate
Source/Drain defined by
metal gate
MBE regrowth
InGaAs quantum well
barrier
substrate
Regrowth InGaAs, in situ Mo
sidewall
metal gate
N+ source
InGaAs quantum well
N+ drain
barrier
contact Resistance:
0.5 W-mm2 (2.5 W-mm)*
substrate
gate dielectric
sidewall
metal gate
source contact
N+ source
drain contact
InGaAs quantum well
barrier
substrate
N+ drain
* Wistey, EMC 2008
ISCS 2008
Process flow
Gate definition
blanket
metal
Sidewall, Source/Drain
sidewall
r
Ti/W
gate
oxide
InGaAs channel
InP subchannel
barrier
r
r
r
well
well
well
SI substrate
(starting material)
blanket gate
deposition
etch gate,
etch dielectric
etch upper channel
sidewall formation
S/D regrowth
S/D contacts
mesa isolate S/D
ISCS 2008
Gate Definition: Challenges
r
r
r
well
InP well
barrier
ion
damage
• Must scale to 22 nm
• Dielectric cap surrounding the gate for source/drain regrowth
• Metal & Dielectric etch must stop in 5 nm channel
• Dry etch must not damage thin channel
Process must leave surfaces ready for S/D regrowth
ISCS 2008
Gate Stack: Multiple Layers & Selective Etches
Key: stop etch before reaching dielectric, then gentle low-power etch to stop on dielectric
FIB Cross-section
resist
SF6 / Ar
etch 50 W
Cl2 / O2
etch 15 W
SiO2
W gate metal
Damage free channel
Cl2 / O2
etch 15 W
Cr etch stop
SF6 / Ar
etch 15 W
SiO2
Cr etch mask
Cr
dielectric
KOH wet etch
Al2O3 (r)
InGaAs well
W
InP well
barrier
SI substrate
Dry etch scheme
Process scalable to sub-100 nm gate lengths
ISCS 2008
Dielectric etch and sidewall formation
r
r
40 nm SiN
sidewall
dil KOH
r
InGaAs well
InP well
barrier
Dielectric etch
r
InGaAs well
InP well
barrier
Sidewall definition
r
r
well
InP well
barrier
InGaAs etch
ISCS 2008
Surface cleaning before regrowth
• Clean organics by 30 min UV Ozone
• Ex-situ HCl:H2O clean
HAADF-STEM*
InGaAs
regrowth
Interface
• In-situ 30 min H clean
• c(4×2) reconstruction before regrowth
InGaAs
2 nm
• Defect free regrowth
Epi-ready surface before regrowth,
defect free regrowth on processed wafer
* Wistey, EMC 2008
ISCS 2008
Height selective Etching*
PR
Mo
r
Planarize
r
r
r
well
InP well
barrier
well
InP well
barrier
InGaAs
r
Strip PR
r
r
r
well
InP well
barrier
well
InP well
barrier
ICP O ash
2
PR
r
r
SF6/Ar Mo etch
InGaAs wet etch
PR
well
InP well
barrier
Dummy gate
No regrowth
* Burek, J.Cryst.Growth, submitted for publication
ISCS 2008
MOSFET characterstics
100
100
Lg  10 microns, Wg  50 microns
g
Vg  0 V to 2 V in 0.25 V steps
Drain current ( mA)
Drain Current, uA
80
L =10mm, W =50mm
60
40
g
V =2V
80
ds
60
40
Rs ~ 1 MW-mm!
20
20
0
0
0
0
0.5
1
Vds, Volts
1.5
0.5
2
•
•
Extremely low drive current: 2 mA/mm
Extremely high Ron= 10-100 kW
•
Why is Rs so high?
1
V (Volts)
1.5
2
gs
ISCS 2008
Source Resistance 1: Poly Growth on InP
After regrowth
Rough InGaAs
regrowth
SEM
InGaAs regrowth on unprocessed thin InP*
•
•
Spotty RHEED during regrowth: faceted growth
InP desorbs P during hydrogen clean or regrowth: InP converts to highlystrained InAs*
•
From TLM measurement, Rsh= 310 W/□, rc=130 W-mm2 and Rs= 300 W-mm
Sheet resistance doesn’t explain 1 MΩ-µm source resistance.
* Wistey (in preparation)
ISCS 2008
Source Resistance 2: Gap in Regrowth
SEM
InGaAs
regrowth
1200
SEM
g
1000
SiO2
800 W / Cr / SiO2 W
No regrowth
gate r
600
InGaAs
InP
d
Electron depletion
N+ regrowth
InGaAs
regrowth
Gap
~ 200 nm
Cr
No regrowth
I (mA)
W / Cr / SiO2 gate
L = 10 mm W=10 mm V =0.0 V
Electron
depletion
barrier
400
200
0
0
2
4
V (V)
6
8
ds
•
No regrowth within 200 nm of gate because of shadowing by gate
•
Gap region is depleted of electrons
•
Breakdown at Vg=0V, ~ 8V, consistent with 400 nm gap and InGaAs breakdown
field of 20V/mm*
High source resistance because of electron depletion in the gap
*http://www.ioffe.rssi.ru/SVA/NSM/Semicond/
ISCS 2008
Regrowth: Solutions
smooth InGaAs regrowth on thin InGaP*
High T migration enhanced
Epitaxial (MEE) regrowth*
No Gap
gate
regrowth interface
*Wistey, EMC 2008
Wistey, ICMBE 2008
ISCS 2008
Conclusion
•
Scalable III-V MOSFET process with self-aligned source/drain with MBE regrowth
•
Gate proces and H clean leave a epi-ready 5 nm channel
•
Low drive current in initial devices because of break in regrowth
•
Improved regrowth techniques in next generation of devices
This work was supported by Semiconductor Research Corporation under the
Non-classical CMOS Research Program
ISCS 2008