215th ECS Meeting, San Francisco, May 28, 2009 III-V/Ge Channel Engineering for Future CMOS Mark A.

Download Report

Transcript 215th ECS Meeting, San Francisco, May 28, 2009 III-V/Ge Channel Engineering for Future CMOS Mark A.

215th ECS Meeting, San Francisco, May 28, 2009
III-V/Ge Channel Engineering for
Future CMOS
Mark A. Wistey
University of California, Santa Barbara
Now at University of Notre Dame
U. Singisetti, G. Burek, A. Baraskar,
V. Jain, B. Thibault, A. Nelson,
E. Arkun, C. Palmstrøm, J. Cagnon, S.
Stemmer, A. Gossard, M. Rodwell
University of California Santa Barbara
[email protected], 805-893-3279
P. McIntyre, B. Shin, E. Kim
Stanford University
S. Bank
University of Texas Austin
Y.-J. Lee
Intel
Funding: SRC
Outline: Channels for Future CMOS
• FET scaling requirements... and failures
• Motivation for Regrown MOSFETs
• III-V Benefits and Challenges
• Fabrication Process Flow
• Depletion-mode MOSFETs
• The Shape of Things to Come
M. Wistey, Spring ECS 2009
2
Future CMOS Priorities
High Performance
High drive current Id / Wg for wiring
Low gate delay CFET∆V/Id for local
Low Parasitics
Capacitance – already 1-2 fF/µm
Resistance – already ~50% Rtot
Leakage Currents – now 50% power
Compatible with Existing CMOS
High packing density –width & contacts small
Growable on Si substrates
M. Wistey, Spring ECS 2009
Graphics: Mark Rodwell
Simple FET Scaling
Goal double transistor bandwidth when used in any circuit
→ reduce 2:1 all capacitances and all transport delays
→ keep constant all resistances, voltages, currents
reduce 2:1 all lengths,
widths, thicknesses
gm , Id held constant
✓
held constant
✓ (doubles mA/ m, mS/ m)
✓
reduced 2:1
edge capacitances reduced 2:1
✓
substrate capacitances reduced 2:1
✓
must reduce  c 4:1
M. Wistey, Spring ECS 2009
Slide: Mark Rodwell
4
“External” Resistances are Critical
Source
Coverlap
Lg
Cfringing
Drain
Gate
Dielectric, εr
n+
tox
Channel (p or NID)
Rc
Raccess
xj
n+
Cox Back Barrier
Rsp & Rif & Rq
Resistances constant ⇒ Resistivities must scale as 1/Lg2:
• Contact resistance Rc
• Access & spreading resistance
• Interface resistance & source
starvation
• Sharvin resistance (quantized
conductance):
M. Wistey, Spring ECS 2009
5
Transconductance Scaling Challenges
gm ~ (1/Cg-ch)vthWg
...Should stay constant (double mA/µm)
But voltage divider exists:
Gate
Cox scales as 1/EOT ...EOT scales poorly
Top Barrier or Oxide
Csemi ~ εchan.LgW/d
Channel
Cdos =
Bottom Barrier
Thin channel
tqw
d
tqw
d
E1
...Smaller
...Smaller
Thick channel
☹
☹
☹
CB
E1
CB
Wavefunction pushed away from
gate
Csemi scales poorly
Similar problem with overlap & fringing capacitances.
Solution: Increase vth using new material.
M. Wistey, Spring ECS 2009
6
MOTIVATION FOR REGROWN FETs
7
Device Choice: Why not HEMTs?
Wide recess→ okay DIBL, subthreshold slope, Cgd
Wide contacts→ Rc okay even with poor contacts
Injection thru barrier
Long recesses, lightly
doped
= high Raccess
HEMTs obscure scaling issues.
M. Wistey, Spring ECS 2009
} Not scaled
Low gate barrier
= Limited carrier density
Scalable III-V FET Design
Classic III-V FET (details vary):
Large Area Contacts
Gap
Gate
Large Rc
{
Source
{
Large Raccess
Drain
Top Barrier or Oxide
• Disadvantages
of III-V’s
{
Channel
Bottom Barrier
InAlAs Barrier
Low
doping
• Advantages
of III-V’s
III-V FET with Self-Aligned Regrowth:
High Velocity Channel
Small Raccess
Small Rc
High mobility
access regions
Self-aligned
Gate
High-k
n+ Regrowth
High doping: 1013 cm-2
avoids source exhaustion
M. Wistey, Spring ECS 2009
High barrier
Channel
In(Ga)P Etch Stop
InAlAs Barrier
2D injection avoids
source starvation
Low sheet resistance;
dopants active as-grown
9
Big Picture: Salicide-like Process
Analogy: Self-aligned silicide (salicide) process:
Salicides
Regrown Contacts
Metal Gate
Salicide
High-k
Channe
l
....
Advantages:
Self-aligned
No e- barrier
CMOS-safe metals
Metal Gate
Source Contact
n+
Regrowth
High-k
Channe
l
....
Barrier
Take from Silicon:
Unlike classic III-V devices:
Avoid liftoff
Dry etches
Self-aligned processes
Surface channels
Do III-V fabrication in Si-like fashion.
M. Wistey, Spring ECS 2009
Break from Silicon:
No implantation
Insufficient doping
Surface damage
Annealing is no panacea
Encapsulate gate metals
Arsenic capping
Ship wafers for high-k
Strain is cheap
10
III-V Benefits and Challenges
11
Channel Roughness Scattering
•Challenge: Sixth power (!) scattering from interface
roughness:
µ ~ (1/Mscat)2 ~ 1/(∂E/∂W)2 ~ W6 (Gold SSC 1987)
•Trend weaker in shallow or narrow wells (Li SST 2005)
Fit: ~W-1.95
•Screening helps too
•Does not seem to be a problem for 5nm InGaAs
M. Wistey, Spring ECS 2009
12
Drive Current in the Ballistic & Degenerate Limits

eot includes the
electron wavefunction depth
n  m* / m0 
1/2
3/ 2
 mA Vgs Vth 
J  K  84
 

 m   1V 
where
K


1  c dos,o / c ox  m / m0 
*
1/ 2

Inclusive of non-parabolic band effects, which increase cdos ,
InGaAs & InP have near-optimum mass for 0.4-1.0 nm EOT gate dielectrics
Rodwell IPRM 2008
High Mobility in Narrow InGaAs Channels
Hall Measurements
No Shubnikov-de Haas
Oscillations
4K
InAlAs
mobility:
346
Electrons occupy multiple channels
But electrons aren’t in InAlAs...?
• Unclear whether high mobility is in narrow channel
• Unreasonable simulation difficulty.
– Nonparabolic bands, degenerate statistics, bandgap renormalization, screening...
• Need FET to remove uncertainty: eliminate doping altogether.
M. Wistey, Spring ECS 2009
14
Regrowth Interface Resistances
Interface resistances tested in separate blanket regrowths (no gates):
In-situ Mo Contact  c < 1 -  m2
Source
Contact
25 nm regrown InGaAs Rsh=70 /sq
Metal Gate
Drain
Contact
High-k
n+ Regrowth
InGaAs
InP or InGaP etch stop
InAlAs barrier
InGaAs-InGaAs re-growth resistance < 1 -  m2.
InGaAs-InP re-growth resistance = 6 -  m2 (on thick InP).
FABRICATION PROCESS FLOW
16
Process Flow: Gate Deposition
High-k first on pristine channel.
Cr
Tall gate stack.
Litho.
SiO2
Selective etches to channel.
Metals
Critical etch process:
Stop on channel with no damage
er
NID InGaAs Channel
InP/InGaP etch stop
InAlAs barrier
InP substrate
M. Wistey, Spring ECS 2009
17
Gate Stack: Multiple Layers & Selective Etches
Key: stop etch before reaching dielectric, then gentle low-power etch to stop on dielectric
M. Wistey, Spring ECS 2009
Rodwell IPRM 2008
18
Process Flow: Sidewalls & Recess Etch
SiNx or SiO2 sidewalls
Encapsulate gate metals
SiO2,
SiNx
Metals
Controlled recess etch
Slow facet planes
Not needed for depletion-mode FETs
er
Channel
InP/InGaP etch stop
InAlAs barrier
InP substrate
M. Wistey, Spring ECS 2009
19
Surface Preparation Before Regrowth
SiO2,
SiNx
O3 (g)
UV-ozone (20 min)
Metal
er
Channel
HCl:H2O 1:10 etch (60 sec)
H2O rinse, N2 dry
SiO2,
SiNx
HCl+H2O (l)
Metal
er
Channel
Bake under ultrahigh vacuum
Hydrogen cleaning
10-6 Torr, 30 min.,
400°C (InP) or 420°C (InGaAs)
Thermal deoxidation may work also.
M. Wistey, Spring ECS 2009
SiO2,
SiNx
H2 + H (g)
Metal
er
Channel
20
Clean Surface Before Regrowth
InP etch
stop
Clean, undamaged surface after Al2O3 dielectric
etch & InGaAs recess etch.
M. Wistey, Spring ECS 2009
21
At Last: Regrowth & Metal
Regrow n++ InGaAs
Doping: n~3.6x1019 cm-3 (Si~8x1019 cm-3)
V/III ratio=30
Tsub = 460°C
SiO2,
SiNx
Mo
n++
InGaA
s
Metals
er
Channel
n++
InGaA
s
InP etch stop
RHEED before growth
InAlAs barrier
Blanket metallization:
Either in-situ Mo or ex-situ TiW
Singisetti APL, submitted, or Crook APL 2007
M. Wistey, Spring ECS 2009
22
TEM of Regrowth: InGaAs on InGaAs
HRTEM
InGaAs n+ regrowth
Interface
HAADF-STEM`
InGaAs n+
Interface
2 nm
Regrowth on processed but unpatterned InGaAs.
No extended defects.
M. Wistey, Spring ECS 2009
23
Removing Excess Overgrowth
1. Spin on thick polymer
Polymer
2. Mo & InGaAs Etch
Approach #1:
Remove it
SiO2
Height-selective etch
Wistey MBE 2008 & Burek JCG 2009
Metal
Oxide
Regrowt
InGaAs
h
InGaP etch stop
InAlAs barrier
Polymer
SiO2
Metal
Oxide
Regrowth InGaAs
InGaP etch stop
InAlAs barrier
Approach #2:
Don’t Grow It
Quasi-Selective
growth
Wistey EMC 2009
M. Wistey, Spring ECS 2009
24
Regrowth on InP vs. InGaP
InP regrowth RHEED
InP regrowth SEM
SEM: U. Singisetti
• Conversion
of <6nm InP
to InAs
• Strain
relaxation
As
P
InGaAs
InAs
InGaAs
InAs
InP etch stop
InAlAs barrier
InAlAs barrier
As
M. Wistey, Spring ECS 2009
25
Regrowth on InGaP
As
• Replace InP with InGaP
• Converts to InGaAs
(good!)
• Strain compensation
Wistey EMC 2008
Converted
from InGaP
P
InGaAs
InGaP
InGaAs
InGaP
InGaAs
InGaP
InAlAs barrier
InGaP regrowth RHEED
InGaP regrowth SEM
2
M. Wistey, Spring ECS 2009
26
DEPLETION-MODE MOSFETS
27
SiNx
Scalable InGaAs MOSFETs
300 nm SiO2 Cap
50 nm Cr
50 nm W
Mo
Mo
5 nm Al2O3
++
n regrowth InGaAs Channel, NID n++ regrowth
3 nm InGaP Etch Stop, NID
10 nm InAlAs Setback, NID
5 nm InAlAs, Si=8x1019 cm-3
200 nm InAlAs buffer
Semi-insulating InP Substrate
Top view SEM
M. Wistey, Spring ECS 2009
Oblique
view
28
SiNx
Scalable InGaAs MOSFETs
300 nm SiO2 Cap
50 nm Cr
50 nm W
Mo
Mo
5 nm Al2O3
++
n regrowth InGaAs Channel, NID n++ regrowth
3 nm InGaP Etch Stop, NID
10 nm InAlAs Setback, NID
5 nm InAlAs, Si=8x1019 cm-3
200 nm InAlAs buffer
Semi-insulating InP Substrate
• Conservative doping design:
• [Si] = 4x1013 cm-2
• Bulk n = 1x1013 cm-2 >> Dit
• Large setback + high doping
= Can’t turn off
0.9µm
0.8µm
0.7µm
0.6µm
0.5µm
0.5µm
1µm
10µm
M. Wistey, Spring ECS 2009
29
SiNx
Series Resistance
300 nm SiO2 Cap
Possible causes:
Poly nucleation at gate
Thinning near gate
Strain-induced dislocations
Incomplete underfill
Insufficient doping under sidewall
Now known to be a growth issue. See DRC & EMC 2009 for solution.
50 nm Cr
50 nm W
Mo
5 nm Al2O3
++
n regrowth InGaAs Channel, NID
3 nm InGaP Etch Stop, NID
10 nm InAlAs Setback, NID
5 nm InAlAs, Si=8x1019 cm-3
InAlAs buffer
M. Wistey, Spring ECS 2009
30
The Shape of Things to Come
Generalized Self-Aligned Regrowth Designs:
Recessed
n+ Regrowth
Raised
Gate
Gate
Top Barrier
Top Barrier
Channel
Back Barrier
Substrate
Channel
Back Barrier
Substrate
• Self-aligned regrowth can also be used for:
• GaN HEMTs (with Mishra group at UCSB)
• GaAs pMOS FETs
• InGaAs HBTs and HEMTs
• All high speed III-V electronics
M. Wistey, Spring ECS 2009
31
Conclusions
• Scaled III-V CMOS requires more than reduced
dimensions
• InGaAs offers a high velocity channel, high mobility
access
• Self-aligned regrowth: a roadmap for scalable III-V
FETs
–Provides III-V’s with a salicide equivalent
–Can improve GaN and GaAs FETs too
• DFETs show peak gm = 0.24mS/µm
• High resistance (a growth problem) limited FET
performance
M. Wistey, Spring ECS 2009
32
Acknowledgements
• Rodwell & Gossard Groups (UCSB): Uttam Singisetti,
Greg Burek, Ashish Baraskar, Vibhor Jain...
• McIntyre Group (Stanford): Eunji Kim, Byungha Shin,
Paul McIntyre
• Stemmer Group (UCSB): Joël Cagnon, Susanne
Stemmer
• Palmstrøm Group (UCSB): Erdem Arkun, Chris
Palmstrøm
• SRC/GRC funding
• UCSB Nanofab: Brian Thibeault, NSF
M. Wistey, Spring ECS 2009
33
Conclusions
• Scaled III-V CMOS requires more than reduced
dimensions
• InGaAs offers a high velocity channel, high mobility
access
• Self-aligned regrowth: a roadmap for scalable III-V
FETs
–Provides III-V’s with a salicide equivalent
–Can improve GaN and GaAs FETs too
• DFETs show peak gm = 0.24mS/µm
• High resistance (a growth problem) limited FET
performance
M. Wistey, Spring ECS 2009
34