KESİT GÖRÜNTÜSÜ OLUŞTURMA (RECONSTRUCTION) YÖNTEMLERİ Türkay TOKLU İçerik Kesit görüntüsü oluşturma yöntemlerinin gelişimi Nükleer Tıpta projeksiyonlar Fourier Kesit Teoremi Kesit görüntüsü eldesinin analitik yöntemleri Kesit görüntüsü eldesinin iteratif.
Download ReportTranscript KESİT GÖRÜNTÜSÜ OLUŞTURMA (RECONSTRUCTION) YÖNTEMLERİ Türkay TOKLU İçerik Kesit görüntüsü oluşturma yöntemlerinin gelişimi Nükleer Tıpta projeksiyonlar Fourier Kesit Teoremi Kesit görüntüsü eldesinin analitik yöntemleri Kesit görüntüsü eldesinin iteratif.
KESİT GÖRÜNTÜSÜ OLUŞTURMA (RECONSTRUCTION) YÖNTEMLERİ Türkay TOKLU İçerik Kesit görüntüsü oluşturma yöntemlerinin gelişimi Nükleer Tıpta projeksiyonlar Fourier Kesit Teoremi Kesit görüntüsü eldesinin analitik yöntemleri Kesit görüntüsü eldesinin iteratif yöntemleri XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 2 Giriş Nükleer Tıpta tomografik görüntüleme için yapılmış olan ilk sistem Kuhl ve Edwards’ın geliştirdikleri MARK IV sistemidir. Kesit görüntüleri Basit Geriye Projeksiyon yöntemiyle elde edilmeye çalışılmıştır. Tatmin edici görüntüler elde edilememiştir. Dedektör PMT XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 Hasta 3 Giriş XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 4 Giriş XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 5 Projeksiyonlar XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 6 1-D Projeksiyon p ( s ) D(s) f ( s , t )e d ( s ) ( s ,t ) dt dt Foton azalımı dikkate alınmazsa: d ( s) p ( s) D(s) D( s) f ( s, t )dt Geometriden anlaşılabildiği gibi: s xCos ySin t xSin yCos XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 7 Radon Transformu p (s) D ( s ) f (s, t )dt f ( x, y ) xCos ySin s dxdy Bu ifade f(x,y) fonksiyonunun 2-Boyutlu Radon Transformu olarak adlandırılır. Eğer 1-Boyutlu projeksiyonların 2-Boyutlu Ters Radon Transformu alınırsa objenin 2-Boyutlu kesit görüntüsü elde edilir. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 8 ANALİTİK TEKNİKLER Fourier Kesit Teoremi Projeksiyonun 1-Boyutlu Fourier Transformu alınırsa: F1D p ( s) P ( s ) p ( s )e i s s ds f ( s, t )dt e i s s ds f ( x , y )e f ( x , y )e i s xCos ySin ix s Cos e y dxdy iy s Sin dxdy s x F s Cos , s Sin F ( x , y ) x sCos ve y s Sin XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 10 Fourier Kesit Teoremi Bu sonuca göre bir açısındaki projeksiyonun 1-Boyutlu Fourier Transformu, Fourier uzayında aynı açıda bir doğruyla temsil edilmektedir. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 11 Fourier Kesit Teoremi y x Fourier uzayında elde edilen görüntünün bir kare matrise interpolasyonu zaman almaktadır. Yüksek frekanslara gidildikçe bilgi azalmaktadır. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 12 Basit Geriye Projeksiyon Basit Geriye Projeksiyon yönteminde elde edilen her projeksiyon, bilgisayarda oluşturulan kesit görüntüsü matrisindeki piksellere aynı açıda geri yansıtılır. Projeksiyonlarda derinlik bilgisi bulunmadığı için bu yansıtma işlemi projeksiyondaki bir noktaya karşı gelen tüm piksellere uygulanır. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 13 Basit Geriye Projeksiyon B C D E F G :1 :3 :4 : 16 : 32 : 64 XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 14 Basit Geriye Projeksiyon Polar koordinatlarda geriye projeksiyon işlemi: fˆ (r , ) Bpj p ( s ) B p rCos ( ) d 0 P ( r )ei r s d r d s xCos ySin 0 P ( r )ei r ( xCos ySin ) d r d (*) 0 XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 15 Basit Geriye Projeksiyon P(r) ‘nin 2-Boyutlu Ters Fourier Transformu aşağıdaki gibi verilir: F2D1 P ( r ) i P ( ) e r r r ( xCos ySin ) d r d 0 (*) ifadesi tekrar yazılırsa: r i P ( ) e r 0 r fˆB ( x, y) r ( xCos ySin ) d r d 1 P ( r ) Bpj F2 D r XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 16 Basit Geriye Projeksiyon 1 P ( r ) F ( x , y ) 1 ˆf ( x, y ) Bpj p ( s) Bpj F2 D F2 D B r r XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 17 Basit Geriye Projeksiyon XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 18 Basit Geriye Projeksiyon XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 19 Basit Geriye Projeksiyon XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 20 Geriye Projeksiyonun Filtrelendirilmesi Bu yöntemde geriye projekte edilmiş görüntü Fourier uzayında Yokuş Fonksiyonu (Ramp filtre) ile çarpılır ve daha sonra ters Fourier Transformu alınır. fˆFB ( x, y ) F2D1 r F2 D fˆB ( x, y ) F ( x , y ) F r r F2D1 F ( x , y ) 1 2D XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 21 Geriye Projeksiyonun Filtrelendirilmesi XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 22 Geriye Projeksiyonun Filtrelendirilmesi Yokuş fonksiyonu yüksek frekanslı gürültünün genliğini arttırır. Bu nedenle Alçak-Geçirgen filtreler (Pencere Fonksiyonu) kullanılır. Bu filtreler yüksek frekanslı bilginin genliğini düşürür. fˆFBF ( x, y ) F2D1 W ( x , y ) F ( x , y ) F2D1 W ( x , y ) F2D1 fˆB ( x, y ) XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 23 Geriye Projeksiyonun Filtrelendirilmesi 0,5 0,5Cos eğer m WHann ( ) m 0 eğer m WButterworth ( ) XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 1 1 m 2n 24 Filtrelendirilmiş Projeksiyonların Geriye Projeksiyonu Bu yöntem Geriye Projeksiyonun Filtrelendirilmesi yöntemine özdeştir. İşlem sıralarında değişiklikler yapılarak prosedür hızlandırılır. 1-Boyutlu FT’u alınan projeksiyonlar Yokuş fonksiyonu ile çarpılır ve çarpımın ters FT’u alınır. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 25 Filtrelendirilmiş Projeksiyonların Geriye Projeksiyonu p ( s ) F1D1 s F1D p ( s ) fˆBF ( x, y ) Bpj p ( s ) Bpj F Bpj F1D1 s F1D p ( s ) 1 1D s P ( s ) s P ( s ) F s 2 1D F1D1 F ( x , y ) XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 26 Filtrelendirilmiş Projeksiyonların Geriye Projeksiyonu Yokuş fonksiyonu (ve pencere fonksiyonu) ile çarpma işlemi ve FT işlemleri 1-Boyutta yapıldığı için yöntem daha kısa bilgisayar zamanı alır. İşlemler öncelikle projeksiyonlar üzerinde yapıldığı için tamamlanan her projeksiyonda çarpma ve FT işlemleri projeksiyon tamamlanır tamamlanmaz gerçekleştirilebilir. Yöntem genelde kısaca Filtrelendirilmiş Geriye Projeksiyon (FBP) olarak anılır. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 27 Filtrelendirilmiş Projeksiyonların Geriye Projeksiyonu m=0,1 m=0,2 m=0,3 m=0,4 m=0,5 Butterworth n=2 Butterworth n=4 Butterworth n=8 Butterworth n=32 XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 Hann 28 Filtrelendirilmiş Projeksiyonların Geriye Projeksiyonu m=0,1 m=0,2 m=0,3 m=0,4 m=0,5 Butterworth n=2 Butterworth n=4 Butterworth n=8 Butterworth n=32 XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 Hann 29 Konvolüsyon Geriye Projeksiyon FBP yöntemi Fourier uzayında iki fonksiyonun çarpımını içerir. Bu işlem kartezyen uzayda Konvolüsyon işlemi ile özdeştir: b f (t ) g (t ) f ( ) g (t )d a XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 30 Konvolüsyon Geriye Projeksiyon p ( s) F1D1 s F1D p ( s) F1D1 s p ( s) F r s e 1 1D m m 2 i s s d s Sin x Sinc x x s e 2 i s d s s Sin 2 m s m Sin 2 m s s 2s2 2 m2 Sinc 2 m s m2 Sinc 2 m s XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 31 Özet Geriye Projeksiyonun Adım Filtrelendirilmesi Filtrelendirilmiş Projeksiyonların Geriye Projeksiyonu Konvolüsyon Geriye Projeksiyon 1 Projeksiyonların basit geriye projeksiyonu Projeksiyonların 1-D FT Projeksiyonların yokuş ve pencere fonksiyonları ile konvolüsyonu 2 Geriye projekte edilmiş görüntünün 2-D FT 1-D yokuş ve pencere fonksiyonu uygulaması Basit geriye projeksiyon 3 2-D yokuş ve pencere fonksiyonu uygulaması 1-D Ters FT 4 2-D Ters FT Basit geriye projeksiyon XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 32 Özet Bahsi geçen analitik yöntemlerde görüntü bozucu etkenlere yer verilmemiştir. Görüntüleme sisteminin mükemmel homojeniteye ve mekanik doğruluğa, ve sonsuz yüksek ayırma gücüne sahip olduğu, foton azalımı ve saçılma etkilerinin olmadığı varsayılmıştır. Gerçekte bu etkiler oluşturulan kesit görüntülerine yansır. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 33 Özet XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 34 İTERATİF TEKNİKLER Genel Yapı XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 36 İteratif Yöntemlerin Avantajları Analitik algoritmalardaki en büyük kısıtlama gürültü ve foton azalımı gibi fiziksel etkilerin algoritmaya yansıtılamamasıdır. İteratif yöntemlerde ise gürültü algoritma içerisinde direkt olarak modellenebilir. Buna ek olarak iteratif yöntemler pozisyona bağlı azalım katsayıları ve mesafeye bağlı ayırma gücü gibi emisyon ve dedeksiyon probleminin karmaşık fiziksel modellerini çözmeye uygundur. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 37 İteratif Yöntemlerin Dezavantajları İteratif algoritmalarının temel dezavantajı uzun bilgisayar zamanı almalarıdır ve FBP yöntemine göre oldukça yavaştır. Bununla beraber bilgisayar teknolojisindeki ilerlemeler ve bazı hızlandırma yöntemleri iteratif teknikleri klinik olarak kullanılabilir bir yöntem haline getirmiştir. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 38 İteratif Tekniklerin Sınıflandırılması İteratif teknikler, – – – İstatistiksel olmayan cebirsel algoritmalar, En Küçük Kareler yöntemini de içeren Gauss istatistiğine dayanan algoritmalar, Maksimum Olasılık (ML, Maximum Likelihood) algoritmasını içeren Poisson istatistiğine dayanan teknikler olarak üç ana başlıkta incelenebilir. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 39 Terminoloji fj : Başlangıç veya tahmin görüntüsündeki j pikselinin değeri pi : Projeksiyondaki i pikselinin değeri pi İleri projeksiyon: pi a fj a pi ij j Geriye projeksiyon: f j ij i aij : Geçiş matrisi fj XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 40 Cebirsel Yöntemler ART (Algebraic Reconstruction Technique) Yöntemi ART yöntemi tüm iteratif yöntemlerde olduğu gibi bir başlangıç görüntüsü tahmini ile başlar. Başlangıç görüntüsünden ileri projeksiyon kullanılarak projeksiyonlar hesaplanır. Başlangıç görüntüsü, ölçülen ve hesaplanan projeksiyonlar arasındaki farklılığı kompanse edecek bir farkla modifiye edilir. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 42 ART (Algebraic Reconstruction Technique) Yöntemi f jyeni f jeski pi aik fkeski k Bir açıdaki projeksiyona ait düzeltme faktörleri hesaplandıktan sonra faktörler piksel değerlerine yansıtılır. Bir sonraki projeksiyon için bu yeni değerler başlangıç görüntüsü olarak alınır. Tüm projeksiyonlar için güncelleme tamamlandığında bir iterasyon tamamlanmış olur. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 43 ART Yöntemi Varyantları ART yönteminde düzeltme faktörleri çarpım olarak uygulandığı için yöntem MART (Multiplative ART) olarak bilinir. Düzeltme faktörlerinin toplam olarak uygulandığı AART (Additive ART) diğer bir varyanttır. Görüntünün eş-zamanlı tekrarlanarak elde edilmesi yönteminde (SIRT, Simultaneously Iterative Reconstruction Technique) düzeltmeler her projeksiyondan sonra değil tüm projeksiyonlar tamamlandıktan sonra eşzamanlı olarak yapılır. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 44 ART Yöntemi Varyantları MART ve SIRT yöntemlerinin kombinasyonu olan SMART yöntemi her iki yönteme göre klinik olarak daha başarılı görüntüler oluşturmaktadır. ART yönteminin Blok iteratif versiyonunda (BI-ART) birden fazla projeksiyon gruplanarak düzeltme işlemleri yapılır. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 45 İstatistiksel Yöntemler İstatistiksel Yöntemler Nükleer Tıpta sayım hızlarının nispeten düşük olması nedeniyle toplanan bilgilerde gürültü oranı yüksektir. Gerçek çözümün bu tip veriden çıkartılması imkansızdır ve bu nedenle en iyi çözüme ihtiyaç duyulur. İstatistiksel yöntemlerde en iyi çözüm, verilerden elde edilen en olası çözüm olarak tanımlanır. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 47 İstatistiksel Yöntemler Buna göre kesit görüntüleri, prob[f | P] şartlı olasılığını maksimize eden görüntünün bulunmasıyla elde edilir. prob P | f prob f Bayes kuralı kullanılırsa: prob f | P prob P prob P | f Olasılık (Likelihood) – Görüntünün verilerle uyumluluğu prob f Önceki (Prior) – Görüntü hakkında neler bilindiği prob f | P Sonraki (Posterior) – İlk bilgi ve ölçümden elde edilen verilerin kombinasyonundan neler bilindiği XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 48 İstatistiksel Yöntemler Emisyon ve transmisyon tomografide iki farklı dedektör lokalizasyonunda sayımlar üzerinde ölçülen gürültü korele değildir (beyaz gürültü). Bu durumda olasılık aşağıdaki gibi yazılabilir: prob P | f prob pi | f i Bir fonksiyonun maksimizasyonu logaritmasının maksimizasyonuna eşittir. Böylece MaksimumOlasılık (ML) yöntemi ile görüntü fˆ aşağıdaki ifadenin maksimizasyonu ile elde edilir: log Olasılık n prob pi | f i XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 49 En Küçük Kareler Yöntemi (Gauss İstatistiği) Gürültünün bilinen standart sapma ile Gauss dağılımı olarak temsil edilebildiği varsayıldığında, en olası çözüm en küçük kareler çözümüne eşit olur. En küçük kareler çözümü: LG ( P, F ) i p a f i j 2 i2 ij j 2 1 ( P AF )C 1 ( P AF ) 2 P : elemanları pi olan kolon matrisi A : elemanları aij olan geçiş matrisi F : elemanları fj olan kolon matrisi C : elemanları cii=i2 ve burada diyagonal varsayılan verilerin kovaryans matrisi ´ : transpoz XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 50 En Küçük Kareler Yöntemi (Gauss İstatistiği) Direkt çözüm ifadenin fj‘ye göre birinci türevinin sıfıra eşitlenmesiyle elde edilir: 1 1 ˆ F A C A AC 1P Fisher Bilgi Matrisi olarak adlandırılan A´C-1A matrisinin görüntüdeki piksel sayısı kadar elemanı vardır ve bunların çoğunluğu 0 değildir. Bu matrisin tersinin alınması çok zordur. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 51 ML-EM Algoritması (Poisson İstatistiği) Radyoaktif azalımın rasgele doğası emisyon verileri için Poisson modelinin daha uygun oluğunu gösterir. Temel Poisson modeli, belirli bir beklenen ölçüm (r) için belirli bir sayımın (c) ölçülme olasılığını verir: e r r c prob c | r c! XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 52 ML-EM Algoritması (Poisson İstatistiği) Poisson modeli kullanılarak verilen bir tahmin edilmiş aktivite dağılımına (f) göre, ölçülmüş olan projeksiyon sayım dağılımının (P) dedekte edilme olasılığı, her bir projeksiyon pikseli olasılıklarının çarpımı olarak temsil edilebilir. Bu şartlı olasılık “likelihood, L” olarak tanımlanır: L P | f prob P | f exp aij f j aij f j i j j XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 pi pi ! 1 53 ML-EM Algoritması (Poisson İstatistiği) Olasılığın logaritması alınırsa: log L P | f aij f j pi n aij f j n pi ! i j j fj’ye göre türevi alınır ve sıfıra eşitlenirse: log L P | f pi aij aij 0 f j i i aij f j j pi aij aij f j f j aij f j i i j fj pi fj aij aij i aij f j i j XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 54 ML-EM Algoritması (Poisson İstatistiği) Daha önce de tartışıldığı gibi prob P | f ifadesinin maksimizasyonu, eğer başlangıç dağılımı sabit olarak alınırsa prob f | P ifadesinin maksimizasyonuna eşit olur. Bu, orijinal aktivite dağılımını temsil eden en olası emisyon dağılımının verilen ölçülmüş projeksiyonlar olmasını sağlar. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 55 ML-EM Algoritması (Poisson İstatistiği) Maksimum Olasılığı (ML) belirlemede birçok yaklaşım olmakla beraber bunlardan en çok kullanılanı Beklenti Maksimizasyonudur (EM). EM algoritması iki bağımsız adımdan oluşur: İlk adımda bir önceki iterasyondan tahmin edilmiş aktivite dağılımına dayanarak uygun sistem/geçiş matrisi kullanılarak ileri projeksiyon yöntemiyle projeksiyonlar tahmin edilir. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 56 ML-EM Algoritması (Poisson İstatistiği) İkinci adımda güncel tahmin, bir önceki tahmin ile ölçülen projeksiyonlar arasındaki farklılık oranıyla çarpılmak suretiyle olasılık maksimize edilecek şekilde güncellenir. ML-EM algoritması aşağıdaki gibi türetilir: f jyeni f jeski a lj l aij i pi eski a f ik k k XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 57 ML-EM Algoritmasının Özellikleri Teorik olarak bir tahmin gerçek obje dağılımına daha yakın olduğu sürece, iterasyon sayısının artmasıyla olasılık artar. Gerçekte gürültü varlığında görüntü 16 iterasyon civarında optimum görsel kaliteye ulaşır, daha fazla iterasyonda gürültü artar. Obje 10 iterasyon XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 100 iterasyon 58 ML-EM Algoritmasının Özellikleri Gürültü, FBP yönteminde olduğu gibi pozisyondan bağımsız olmak yerine, sayımla orantılıdır. Bu sinyal gürültü oranının belirgin ölçüde geliştirilebildiği düşük sayım bölgelerinde lezyon dedeksiyonunu kolaylaştırır. Buna ek olarak teoride algoritmanın birçok üstün özelliği daha bulunmaktadır, ancak emisyon tomografisindeki yüksek gürültü seviyesi bu üstünlükleri klinik açıdan önemsizleştirir. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 59 Sıralı Alt-Gruplar EM (OS-EM) ML-EM yöntemini hızlandırmak amacıyla geliştirilmiş bir algoritmadır. ML-EM algoritmasındaki toplamların tüm projeksiyonlar üzerinden bir seferde değil, kullanıcı tarafından seçilmiş alt gruplar üzerinden yapılması yoluyla algoritma hızlandırılır. OS-EM algoritması aşağıdaki gibi tanımlanır: f jyeni f jeski a iS n aij ij iSn pi aik f keski k XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 60 Sıralı Alt-Gruplar EM (OS-EM) Alt-grup sayısı çok küçük seçilmediği sürece OS-EM yöntemiyle yapılan her alt-grup iterasyonundan elde edilen görüntü, tam bir ML-EM iterasyonundan elde edilenle hemen hemen aynıdır. Hesaplama zamanları da hemen hemen aynıdır. Böylece 128 projeksiyon için eğer alt-grup sayısı 4 seçilirse, OS-EM algoritması ML-EM algoritmasına göre 32 kat daha hızlı çalışır. Pratikte alt-grup sayısının 4 seçilmesi hesaplama hızı ve görüntü kalitesi arasında iyi bir denge sağlar. XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 61 OS-EM Varyantları RBI-EM (Rescaled Block-Iterative Expectation Maximization): f jyeni pi f jeski a 1 ij iSn aik f keski max aij k iSn f jeski XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 62 OS-EM Varyantları RAMLA (Row-Action Maximum Likelihood Algotihm): f jyeni pi , 0 a 1 eski eski f j k f j aij 1 k ij eski a f iSn iSn ik k k XI. Ulusal Medikal Fizik Kongresi 14 - 17 Kasım 2007 63 TEŞEKKÜRLER...