4. Penerapan Persamaan dan Pertidaksamaan
Download
Report
Transcript 4. Penerapan Persamaan dan Pertidaksamaan
Menerapkan Persamaan &
Pertidaksamaan Kuadrat
by Gisoesilo Abudi
Page 1
Hubungan antara Koefisien PK
dengan Sifat Akar
Misalkan x1 dan x2 adalah akar-akar persamaan
kuadrat ax2 + bx + c = 0.
• Jika kedua akarnya sama (x1 = x2), maka :
⇔D=0
⇔ b2 – 4ac = 0
⇔ b2 = 4ac
• Jika kedua akarnya berlawanan (x1 = -x2 ), maka :
⇔ x1 + x2 = - b/a
⇔ -x2 + x2 = - b/a
⇔ 0 = - b/a
⇔b=0
Page 2
Hubungan antara Koefisien PK
dengan Sifat Akar
• Jika kedua akarnya berkebalikan (x1 = 1/x2), maka :
⇔ x1 . x2 = c/a
⇔ 1/x2 . x2 = c/a
⇔ 1 = c/a
⇔c=a
Kesimpulan :
1. Akar-akarnya kembar jika dan hanya jika b2 = 4ac
2. Akar-akarnya berlawanan jika dan hanya jika b = 0
3. Akar-akarnya berkebalikan jika dan hanya jika c = a
Page 3
Menyusun PK yang diketahui Akarakarnya
Misalkan : Menggunakan Perkalian Faktor
Jika diketahui x1 dan x2 adalah akar-akar persamaan
kuadrat, maka :
(x – x1)(x - x2) = 0
Contoh
Dengan menggunakan perkalian faktor, susunlah PK
yang akar-akarnya :
a. -2 dan 3
c. 1/3 dan – 1/5
b. -7 dan 0
d. (5 - √3)(5 + √3)
Page 4
Penyelesaian
a. -2 dan 3
⇔ x1 = -2 dan x2 = 3
⇔ (x – (-2)(x – 3) = 0
⇔ (x + 2)(x – 3) = 0
⇔ x2 – x – 6 = 0
Jadi PK : x2 – x – 6 = 0
Untuk lebih jelas Anda coba untuk mencari
penyelesaian contoh b, c, dan d.
Page 5
Menyusun PK yang diketahui Akarakarnya
Misalkan : Menggunakan Rumus jumlah dan
hasil kali akar-akarnya.
Jika diketahui x1 dan x2 adalah akar-akar persamaan
kuadrat, maka :
X2 - (x1 + x2)x + (x1.x2) = 0
Contoh
Dengan menggunakan rumus jumlah dan hasil kali akarakarnya, susunlah PK yang akar-akarnya :
a. -2 dan 3
c. 1/3 dan – 1/5
b. -7 dan 0
d. (5 - √3)(5 + √3)
Page 6
Penyelesaian
a. -2 dan 3
Persamaan kuadratnya :
⇔ x2 – (-2 + 3)x + (-2)(3) = 0
⇔ x2 – x – 6 = 0
Jadi PK : x2 – x – 6 = 0
Untuk lebih jelas Anda coba untuk mencari
penyelesaian contoh b, c, dan d.
Page 7
Menyusun PK Berdasarkan Akar-akar
PK lain
Kita dapat menyusun PK, jika akar-akarnya
diketahui mempunyai hubungan dengan PK
lain.
Contoh 1
Susunlah PK yang akar-akarnya lima lebihnya dari akarakar PK x2 – 8x + 2 = 0 !
Page 8
Penyelesaian.
x2 – 8x + 2 = 0 ⇔ a = 1, b = -8, dan c = 2
Misalkan akar-akar PK : x2 – 8x + 2 = 0 adalah x1 dan x2
Maka : x1 + x2 = - b/a = - (-8/1) = 8
x1 . x2 = c/a = 2/1 = 2
Misalkan akar-akar PK baru yang akan dicari adalah α
dan β, maka : α = x1 + 5 dan β = x2 + 5, sehingga
α + β = (x1 + 5) + (x2 + 5)
α . β = (x1 + 5) . (x2 + 5)
= (x1 + x2) + 10
= x1.x2 + 5x1 +5x2 + 5.5
= 8 + 10
= x1.x2 + 5(x1+x2) + 25
= 18
= 2 + 5 . 8 + 25
= 67
⇔ x2 – (α + β)x + (α.β) = 0
⇔ x2 – (18)x + (67) = 0
⇔ x2 – 18x + 67 = 0
Page 9
Contoh 2
Akar-akar PK x2 – 4x + 5 = 0 adalah p dan q. Susunlah
PK baru jika akar-akarnya (p + 2) dan (q + 2) !
Penyelesaian
Jika α dan β merupakan akar-akar persamaan baru,
maka :
α=p+2⇔p=α–2
β=q+2⇔q=β–2
Karena p merupakan salah satu akar persamaan x2 – 4x
+ 5 = 0, maka :
⇔ (α – 2)2 – 4(α – 2) + 5 = 0
⇔ (α2 – 4α + 4) – 4α + 8 + 5 = 0
⇔ α2 – 4α + 4 – 4α + 13 = 0
⇔ α2 – 8α + 17 = 0, ⇔ ( α = x), maka
x2 – 8x + 17 = 0
Page 10
Persamaan kuadrat ax2 + bx + c = 0, a ≠ 0, mempunyai
akar-akar x1 dan x2, maka :
Akar-akar baru
Persamaan kuadrat baru
x1 + m dan x2 + m a(x – m)2 + b(x – m) + c = 0
x1 – m dan x2 – m a(x + m)2 + b(x + m) + c = 0
2
mx1 dan mx2
m
dan
x1
x1
m
dan
m
x
2
x
2
m
x
x
a
b
c0
m
m
2
x
x
a
b
c0
m
m
a(mx)2 + b(mx) + c = 0
Page 11
Aplikasi Persamaan dan
Pertidaksamaan Kuadrat
Contoh
Sejumlah siswa akan patungan untuk membeli alat
praktek seharga Rp612.000,00. Setelah masing-masing
membayar dengan jumlah yang sama, ada 3 temannya
yang ingin bergabung. Jika ketiga orang itu ikut
bergabung, maka masing-masing akan membayar
Rp34.000,00 kurangnya dari yang telah mereka bayar.
Tentukan jumlah siswa yang berencana akan membeli
alat praktek tersebut !
Page 12
Penyelesaian
Misal jumlah siswa : x
Masing-masing siswa membayar sebesar : (612.000 : x)
Setelah 3 temannya masuk, maka {612.000 : (x + 3)}
Selisih pembayaran = pembayaran mula-mula – pembayaran
setelah 3 temannya bergabung.
34.000
612.000
x
612.000
sehi
x3
sehingga
1
18
x
18
x3
⇔ x(x + 3) = 18(x + 3) – 18x
⇔ x2 + 3x = 18x + 54 – 18x
⇔ x2 + 3x - 54 = 0
⇔ x2 + 3x - 54 = 0
⇔ (x + 9)(x – 6) = 0
⇔ x = -9 atau x = 6
Jadi sebelum 3 teman bergabung ada 6 siswa yg
patungan
Page 13