Transcript Document

Systematic Analysis of Evolution Patterns
in Bio Medical Systems
Dr. Sara Greenberg
Holon Institute of Technology
1
Dr. Sara Greenberg
What is systematic innovation?
A set of knowledge tools methods which
can enable systematic development of
innovative problem solving.
2
Dr. Sara Greenberg
TRIZ was founded in 1946 by a Russian
engineer and scientist,
Genrich S. Altshuller
(Oct.15 1926 - Sept. 24,1998)
"Теория решения
изобретательских задач"
ִ ‫ " ֵּת‬:‫או בעברית‬
‫יאֹורי ָה ֶרשֶ נִי ָה‬
ַ ‫אטלְּסְּ ִקיְך ַז‬
ֵּ ‫ִאיזֹוב ְֵּּר ַט‬
"‫אדאץ‬
3
Dr. Sara Greenberg
‫‪Genrich S. Altshuller‬‬
‫"תאוריה היא מרשימה יותר ככל שהנחותיה פשוטות יותר‪ ,‬ככל שהיא מקשרת בין יותר‬
‫סוגי דברים שונים וככל שתחום הישימות שלה רחב יותר" אלברט איינשטיין‬
‫‪4‬‬
‫‪Dr. Sara Greenberg‬‬
Evolution – were it all begins . . .
5
Dr. Sara Greenberg
Laws of Technological Systems Evolution
•
•
•
•
•
•
•
•
Evolution in stages.
Evolution towards increased ideality.
Non-Uniform development of system elements.
Evolution towards increased dynamism and controllability.
Increased complexity and then simplification.
Evolution with matching and mismatching components.
Evolution towards Micro-level and increased use of fields.
Evolution towards decreased human involvement.
6
Dr. Sara Greenberg
Evolution in stages
7
Dr. Sara Greenberg
Lines of System Development
"Life Lines" Technical Systems by G. S. Altshuller
γ
β
Efficiency
α
t
Number of
Inventions
t
Level of
Invention
t
Profit
t
I
II
III
8
Dr. Sara Greenberg
IV
Evolution in stages
The Driving Forces of Technological Evolution
Ideality, Innovation, Consumers, Resources
Envelope curve
4
3
2
1
t
9
Dr. Sara Greenberg
Evolution in stages
Development of Electronics
P
Microcircuit
Semi-conductor
Vacuum
Lamp
Crystal Set
(radio)
10
Dr. Sara Greenberg
t
What is a Contradiction?
P
An improvement in one characteristic
of a system results in the degradation
of another characteristic.
Traditionally addressed by
compromise, sacrifice or trade-off
P’
No compromise!
Y
Y= -f(X)
Y= f(X)
Contradiction = Barrier
Prevent from Achievement of
the Most Desirable Result
Y=C
11
X
Dr. Sara Greenberg
Evolution in stages
Development of hearing aids
Digital Aids
Transistor Aids
Carbon aids
Horns Trumpets
12
Dr. Sara Greenberg
Evolution Towards Increased Ideality
The main driving force for system evolution is increasing main system
useful functions by elevating value and decreasing the harmful effects:
Σ Useful Functions
`
Value =
Σ Costs + Σ Harm. Functions
Σ Functionality
Ideality =
Σ Costs + Σ Harm
13
Dr. Sara Greenberg
Evolution Towards Increased Ideality
•
•
•
•
•
•
Landing lights on airport runway
Biological glue
Melting stitches in surgery
No-stitch surgery
Drugs with no “side effects”
Stem cells therapy
14
Dr. Sara Greenberg
Non-Uniform Development of System Elements
The process:
Every sub-system evolves according to its own S-curve
Contradiction & problem solving
New system variant
15
Dr. Sara Greenberg
Evolution Towards Increased Dynamism and Controllability
Inventions: Improving Systems
16
Dr. Sara Greenberg
Evolution Towards Increased Dynamism and Controllability
Evolution for Cell Phone Design
Monolithic
System
System with
one joint
System with
many joints
Completely
Elastic System
Field
F
Monolithic
Telephone
Two-piece
Telephone
Three-piece
Telephone
Telephone
with a flexible
casing
17
Dr. Sara Greenberg
Telephone
with projected
Keyboard/Image
Projection
Keyboard
Projection
Image
Evolution Towards Increased Dynamism and Controllability
Segmentation of objects and substances
Transition pattern
18
Dr. Sara Greenberg
Evolution Towards Increased Dynamism and Controllability
Line of Increasing Flexibility suggests that the lens systems should evolve through the
following stages:
?
19
Dr. Sara Greenberg
Substance – Field Analysis
20
Dr. Sara Greenberg
The Evolution of the Microscope
21
Dr. Sara Greenberg
Evolution Towards Micro-level and Increased Use of Fields
Macro- and bio-nanoequivalence of robot
components
From: Biomimetics, Biologically Inspired
Technologies. Edited by Yoseph Bar-Cohen
22
Dr. Sara Greenberg
Evolution Towards Micro-level and Increased Use of
Fields
A vision of a nano-organism: carbon nanotubes (CNT) form the main body;
peptide limbs can be used for locomotion and object manipulation, a
biomolecular motor located at the head can propel the device in various
environments.
23
Dr. Sara Greenberg
Transition Patterns
Complication of Geometrical Shape of Systems and Objects
Transition “Point – Line - Surface – Volume”
Complication of geometrical shape
Volume evolution
Volume
Cylindrical
Spherical
Complicate
Surface evolution
Surface
One curvature
Double curvature Complicate
Lines evolution
Line
2-D curve
3-D curve
Point
24
Dr. Sara Greenberg
Complicate
Functions of Biological Surfaces
The functions of biological
surfaces:
•
•
•
•
•
•
•
•
Adhesion
Friction
Filtering
Sensors
Wetting phenomena
Self-cleaning
Thermoregulation
Optics
25
Dr. Sara Greenberg
Technological systems directed evolution
26
Dr. Sara Greenberg
Evolution Potential Radar Plot Structure
(Dynamization(
27
Dr. Sara Greenberg
System Evolutionary Potential Radar Plot
Increased use of fields
Increased use of resources
Evolution toward micro-levels
Decreased human involvement
28
Dr. Sara Greenberg
!‫תודה רבה‬
29
Dr. Sara Greenberg
“Ideal” Book - System Function
Sony® Reader
30
Dr. Sara Greenberg
What are the application of systematic
innovation?
•
•
•
•
Product improvement
New product development
Process improvement
New process development
31
Dr. Sara Greenberg
‫כיצד פותרים בעיות טכנולוגיות?‬
‫רמה‬
‫‪%‬‬
‫מהפתרונות‬
‫מקורות מידע ‪+‬‬
‫מספר הנסיונות‬
‫לפתור בעיות‬
‫שימוש בכלים של ‪TRIZ‬‬
‫תכונות הפתרון‬
‫‪1‬‬
‫פתרון‬
‫הנראה‬
‫בנקל‬
‫‪32%‬‬
‫ידע אישי‬
‫(‪)~10‬‬
‫אין שימוש בכלים "המצאתיים" (אין‬
‫הגדרת ‪.)contradictions‬‬
‫פתרון הנראה בנקל‬
‫שיפור פשוט של המערכת אינו‬
‫פותר בעיה אמיתית‪.‬‬
‫‪2‬‬
‫שיפור קל‬
‫‪45%‬‬
‫ידע בתוך כלל‬
‫החברה‬
‫(‪)~100‬‬
‫שימוש ב‪inventive principles -‬‬
‫(עקרונות ה"מצאתיים") לפתרון בסיסי‬
‫של ‪"( contradictions‬סתירות") לא‬
‫פותרים את כולן‪.‬‬
‫שיפור קל של המערכת‪.‬‬
‫‪3‬‬
‫שיפור‬
‫משמעותי‬
‫‪19%‬‬
‫ידע מתוך כלל‬
‫התעשיה‬
‫(‪)~1000‬‬
‫"פתרונות ‪ TRIZ‬סטנדרטיים" ופתרון‬
‫של ‪"( contradictions‬סתירות")‬
‫בתוספת של שימוש באפקטים‬
‫פיסיקליים‪ ,‬כימיים גאומטריים וכו‪.‬‬
‫שיפור משמעותי של המערכת‪.‬‬
‫‪4‬‬
‫תפיסה‬
‫חדשה‬
‫‪>4%‬‬
‫מדע ומידע מיחוץ‬
‫לתעשיה‬
‫(‪)~100,000‬‬
‫‪ ,ARIZ‬חוקי התפתחות מערכות‪.‬‬
‫תפיסה חדשה‬
‫מתקבלים פתרונות חדשים‪.‬‬
‫מערכת חדשה המלווה‬
‫בהחלפת הטכנולוגיה‪.‬‬
‫‪5‬‬
‫תגלית‬
‫‪>0.3%‬‬
‫(‪)~1,000,000‬‬
‫פריצת דרך מדעית‪.‬‬
‫תגלית מדעית‪ ,‬מהפכנית‪.‬‬
‫טרנזיטורים‪ ,‬לייזרים‪32 ,‬‬
‫נפתח‬
‫עידן חדש‪.‬‬
‫‪Dr. Sara Greenberg‬‬
Discover the core of a problem with TRIZ
Administrative
Contradiction
System
(one problem with
dozen of sub
problems)
Thinking
Functional
Analysis
Technical
Contradiction
Trimming
Root Cause
Analysis
Physical
Contradiction
Technology
Transfer
Patents
33
Dr. Sara Greenberg
More..
Super-systems
In the Present
Super-systems
requirements
& ones values
F1
1
2
3
4
5
F2
1
2
3
4
5
6
F1: 0
System’s output
functions
& ones values
F1
5
4
3
2
1
F2: +3
F2
3
2
1
Super-systems
In the Present
In the Future
F3
1
2
3
F3: -2
F3
5
4
3
2
1
F5
1
2
3
4
5
F2
1
2
3
4
5
6
F3
1
2
3
F5
1
2
3
4
5
F4: F4
5
4
3
2
1
F5: +
Starting point of the project, existing
system - subject of the project
34
F1
1
2
3
4
5
In the Future
F1
5
4
3
2
1
F2
6
5
4
3
2
1
F4 5 F5
F3
3
2
1
5
4
3
2
1
Developed system – result of the
project
Improving Systems with TRIZ
Dr. Sara Greenberg
4
3
2
1
Technical contradictions
Step 1. Create list of parameters of the given system.
Truck: Speed, Stability, Fuel consumption, Air drag friction, Weight of cargo, Power
of engine, Safety
Step 2. Select your “favorite” parameter and change its value.
Truck:
Speed ↑-> increase
Step 3. Analyze interactions between “changed” favorite parameter and other
parameters of the list. Select conflicting pairs. Each conflicting pair means
Technical Contradiction (TC)
Speed ↑ <-> Stability ↓ => conflict – TC
Speed ↑ <-> Fuel consumption ↑ => conflict – TC
Speed ↑ <-> Air drag friction ↑ => conflict – TC
Speed ↑ <-> Weight of cargo => not a conflict
Speed ↑ <-> Power of engine ↑ => conflict – TC
35 ↑ <-> Safety ↓ => conflict – TC
Speed
Dr. Sara Greenberg
Problem solving example
How to miniaturize the size of the printer?
Restriction of reduction in the printer size is the standard width of the
most widespread А4 paper which makes 210 mm.
Contradiction: The printer should be the size of an А4 paper dimensions
and should be less then the dimensions of an A4 paper in order to
be portable.
The contradiction was resolved by separation in space by using a
geometrical effect. The sheet of a paper can be rolled up in a tube
using less space.
36
Dr. Sara Greenberg
Portable Printer
Solution
The printer head in formed in a
circle. Printer-ring stretches out the
sheet of a paper roll up in a tube.
The new printer is almost three
times less, than its portable
competitors working under the old
circuit.
37
Dr. Sara Greenberg
Solving Contradictions
Altshuller’s Matrix  Physical Contradiction
Identification of
Key Problem/
Conceptual Direction
AC
Route 2
Route 1
Standard
EC
IFR
EC
Altshuler’s
Matrix
Separation
Strategic
PC
IDEA
38
Secondary
Problem
Solving
Dr. Sara Greenberg
38
Engineering Contradictions
Formulating the Technical Contradiction
Inventive Problems written in the form of ‘If - then - but’
AC

EC/TC

Technical Contradiction for
the Airplane Wing
sEC

IF
IFR
THEN

BUT
we increase the area of the wing
It generates more lift
the weight of the wing increases
Matrix

S
39
Dr. Sara Greenberg
39
Engineering Contradictions and
Altshuller’s Matrix
AC

EC/TC

Identifying Specific Parameters
Identify the parameters in the Engineering Contradiction
sEC
Area and Weight are two parameters in the
Engineering Contradiction of the airplane
wing problem

IFR

Matrix

S
40
Dr. Sara Greenberg
40
Engineering Contradictions and
Altshuller’s Matrix
AC

EC/TC

sEC
Identifying Typical Parameters
Identify from Altshuller’s list those Typical Parameters that are similar in
meaning to the Specific Parameters or are derivatives of Specific
Parameters

Altshuller’s Typical
Parameters
Specific
Parameters
IFR

Matrix

S
41
Dr. Sara Greenberg
41
Altshuller’s Matrix - Table of different
combinations of conflicting parameters
42
Dr. Sara Greenberg
Engineering Contradictions and
Altshuller’s Matrix
AC

Typical
Parameter
for Area
Identifying Typical Parameters
EC
Specific Parameters

Typical Parameters
Area of moving object
sEC
Area of Wings

Weight of a stationary object
Weight of a moving object
IFR
Length of a moving object

Weight of Wings
Matrix
Length of stationary object
Strength

Typical
Parameter for
Weight
S
43
Dr. Sara Greenberg
43
Engineering Contradictions and
Altshuller’s Matrix
AC

IFR:
EC

Increasing the Area of moving object (Area of wings) will not increase
Weight of a moving object (Weight of wings)
sEC

IFR

Matrix

S
44
Dr. Sara Greenberg
44
TC
1
2
3
4
5

Area of moving
object
Improving Parameters
Length of stationery
object

Length of moving
object
AC
Weight of stationery
object
Worsening Parameters
Weight of moving
object
Altshuller’s Contradiction Matrix
EC
1
Weight of moving
object
+
-
15,8
29,34
-
29,17
38,34

2
Weight of stationery
object
-
+
-
10,1
29,35
-

3
Length of moving
object
8,15
29,34
-
+
-
15,17,4
Matrix
4
Length of stationery
object
35,28
40,29
-
-
+
17,7
10,70
5
Area of moving
object
2,17
29,4
-
14,50
18,4
-
+
IFR

S
45
39
Parameters
Inventive
Principles
Dr. Sara Greenberg
45
39
Parameters
Engineering Contradictions and Altshuller’s
Matrix
Description of the Inventive Principles
AC

EC

Number
Name
2
Taking out
sEC

17
IFR
Description of Inventive Principles
•
Separate an interfering part or property from an object, or single out the
only necessary part (or property) of an object
•
•
To move an object in two- or three-dimensional space
Use a multi-story arrangement of objects instead of a single-story
arrangement
Tilt or re-orient the object, lay it on its side
Use 'another side' of a given area
Another
dimension •
•

Matrix
29
Pneumatics
• Use gas and liquid parts of an object instead of solid parts (e.g. inflatable,
and
filled with liquids, air cushion, hydrostatic, hydro-reactive)
hydraulics
4
Asymmetry • If an object is asymmetrical, increase its degree of asymmetry

S
•
Change the shape of an object from symmetrical to asymmetrical
46
Dr. Sara Greenberg
46
Engineering Contradictions and
Altshuller’s Matrix
 Pneumatics and hydraulics
The Exhaust gasses are released in
such a way that they are a functional
extension of the wing. They contribute
to generating lift and do not add
weight to the airplane.
(from US Patent N 4 648 571)
47
Dr. Sara Greenberg
47
Separation Principles
Solving Physical Contradictions
Separation upon condition
In Space
In Demands
Separation in space
Separation in time
48
Dr. Sara Greenberg
Inventive principles
49
Dr. Sara Greenberg
Principle 3. Local quality
• Change an object's structure from uniform to non-uniform, change an
external environment (or external influence) from uniform to non-uniform.
• Make each part of an object work in the conditions that are most suitable
for its operation.
• Make each part of an object fulfill a different and useful function.
Example: Non-uniform winding for uniform heating
An infrared lamp heats a semiconductor wafer. The wafer edge cools more
quickly making the temperature higher in the center. Can a uniform heating
be achieved?
The heater spiral is wound with more windings at its edges. This gives more
heat at the edges than in the center, provides a uniform temperature over
the entire surface of the wafer
50
Dr. Sara Greenberg
Transition from Technical to Physical
Contradiction
51
Dr. Sara Greenberg
Effects: Physical, Chemical,
Geometrical, Biological
52
Dr. Sara Greenberg
Separation principle: Space
53
Dr. Sara Greenberg
What does the Solution of Problem
Mean? It Means – We Found a Way to
Change Values of System Parameters
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Chemical
Deformation
Electric field
Electromagnetic wave and light
Fluid
Force, energy, and momentum
Geometric
Magnetic
Mechanical and sound wave
Motion and vibration
Process
Quantity
Radioactivity
Solid
Surface
Thermal
54
Dr. Sara Greenberg