Slides - Georgia Tech Engineering Information Systems Lab

Download Report

Transcript Slides - Georgia Tech Engineering Information Systems Lab

First MIT Conference on Computational Fluid and Structural Mechanics
Cambridge, Massachusetts USA
June 12-15, 2001
Enhancing Engineering Design
and Analysis Interoperability
Part 2: A High Diversity Example
Russell Peak and Miyako Wilson
Georgia Tech
Engineering Information Systems Lab
eislab.gatech.edu
Copyright © 1993-2001 by Georgia Tech Research Corporation, Atlanta, Georgia 30332-0415 USA. All Rights Reserved.
Developed by eislab.gatech.edu. Permission to use for non-commercial purposes is hereby granted provided this notice is included.
An Introduction to X-Analysis Integration (XAI)
Short Course Outline
Part 1: Constrained Objects (COBs) Primer
Part 2: Multi-Representation Architecture (MRA) Primer
(Highlights in proceedings)
– Analysis Integration Challenges
Flap Link:
– Overview of COB-based XAI
A High Diversity Example
– Ubiquitization Methodology
Example Applications
» Airframe Structural Analysis
» Circuit Board Thermomechanical Analysis
» Chip Package Thermal Analysis
– Summary
Part 3: Advanced Topics & Current Research
– Progress towards Multi-Functional Optimization
© 1993-2001 GTRC
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
2
Interoperability
Seamless communication between people, their models, and their tools.

Requires techniques beyond traditional engineering
– Information models
» Abstract data types
» Object-oriented languages (UML, STEP Express, …)
– Knowledge representation
» Constraint graphs, rules, …
– Web/Internet computing
» Middleware, agents, mobility, …

Emerging field: engineering information methods
– Analogous to CAD and FEA methods
© 1993-2001 GTRC
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
3
X-Analysis Integration
(X=Design, Mfg., etc.)




Goal:
Improve engineering processes by enhancing interoperability
between analysis models and other life cycle models (X)
Challenges:
– Heterogeneous Transformations & Idealizations
– Diversity: Information, Behaviors, Disciplines, Fidelity, Feature
Levels, CAD/CAE Methods & Tools, …
– Multi-Directional Associativity:
DesignAnalysis, Analysis  Analysis
One Approach:
Multi-Representation Architecture (MRA)
using Constrained Objects (COBs)
Initial Focus:
Capturing & automating analysis knowledge
for regular design usage
© 1993-2001 GTRC
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
4
X-Analysis Integration Techniques
a. Multi-Representation Architecture (MRA)
3
Analyzable
Product Model
Design Model
4 Context-Based Analysis Model
2 Analysis Building Block
1 Solution Method Model
CBAM
ABB
Solder
Joint
material
C
L

Epoxy
PWB
body3
h1
APM ABB
core: FR4
Plane Strain Bodies System
2 ABB

 total height, h c
base: Alumina
ABBSMM
body 1
body4
Solder Joint
Solder Joint Plane Strain Model
4 CBAM
Component
Solder
Joint
T0
Component
 linear-elastic model
 primary structural
SMM
APM ABB
Analysis Model
PWA Component Occurrence
3 APM
APM
Printed Wiring Assembly (PWA)
Component
b. Explicit Design-Analysis Associativity
body 1
body 4
body
body 2
body 2
PWB
Printed Wiring Board (PWB)
Design Tools
4 CBAM
Analysis Module Catalogs
Analysis Procedures
sj
solder joint
shear strain
range
component
occurrence
c

3 APM

component
total height
hc
linear-elastic model
[1.1]
total thickness
Ubiquitous Analysis
Commercial
Design Tools
Product
Model
Selected Module
ECAD
Idealization/
Defeaturization
Component
Solder Joint
Commercial
Analysis Tools
solder joint
solder
hs
linear-elastic model
[1.1]
detailed shape
[1.2]
linear-elastic model
[2.1]
Ts
average
bilinear-elastoplastic model
Ansys
CAE
PWB
APM  CBAM  ABB SMM
© 1993-2001 GTRC
primary structural material
Tc
Ls
[1.2]
rectangle
(Module Usage)
Solder Joint Deformation Model
MCAD
1.25
length 2 +
pwb
Plane Strain
Bodies System
T0
Lc
Physical Behavior Research,
Know-How, Design Handbooks, ...
1 SMM
deformation model
approximate maximum
inter-solder joint distance
primary structural material
ABB SMM
2 ABB
Fine-Grained Associativity
Ubiquitization
(Module Creation)
3
plane strain bodyi , i = 1...4
geometryi
materiali (E,  ,  )
Informal Associativity Diagram
Solution Tools
c. Analysis Module Creation Methodology
To
[2.2]
a
L1
h1
stress-strain
model 1
T1
L2
h2
stress-strain
model 2
T2
geometry model 3
stress-strain
model 3
T3
 xy, extreme, 3
T sj
 xy, extreme, sj
Constrained Object-based Analysis Module
Constraint Schematic View
Abaqus
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
5
Lo
“XAI Panorama”
Flexible High Diversity Design-Analysis Integration
Benchmark/Tutorial Example: Flap Link (Structural Analysis)
Design Tools
y
mv6
E
reference temperature, To
smv1
r4
force, F

L
L
MCAD Tools
CATIA, I-DEAS*
Pro/E* , UG *, ...
L
F
E, A, 
T, ,  x
One D Linear
Elastic Model
(no shear)
mv5
sr1
temperature, T
Template Libraries
(ABBs, CBAMs, …)
L
Lo
F
material model
youngs modulus, E
cte, 
mv4

e
T
t


mv2
elastic strain, e
mv3
thermal strain, t
mv1
strain,
stress,
area, A
temperature change, T
deformation model
Torsional Rod
linkage
effective length, Leff
start, x1
r1
polar moment of inertia, J
end, x2
outer radius, ro
material
condition
linear elastic model
reaction
allowable stress
twist mos model
Margin of Safety
(> case)
allowable
Lo

1
total elongation, L 2
cross section:
effective ring
mode: shaft torsion
al1
r3
r2
undeformed length, Lo
al2a
length,
al2bL
shear modulus, G
al3
J
r

G

T
stress mos model
Margin of Safety
(> case)
allowable
twist
allowable
actual
actual
MS
MS
Analysis Modules
of Diverse Behavior & Fidelity
(CBAMs)
Flap Link
XaiTools
Extensional Model
y
Extension
Analyzable
Product Model
(APM)
L
Leff
P
1D
L
P
, 
E, A
Analysis Tools
(via SMMs)
x
Flap Link
Plane Strain Model
XaiTools
2D,
3D*
General Math
Mathematica
Matlab*
MathCAD*
...
L
B
ts2
ts1
s
sleeve1
sleeve2
shaft
rib1
rib2
ds1
Materials Libraries
In-House, ...
Parts Libraries
In-House*, ...
ds2
B
1D
Leff
y
Lo
Torsion
T
G, r, ,  ,J
x
Flap Link
Torsional Model
* = Item not yet available in toolkit (all others have working examples)
© 1993-2001 GTRC
T
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
FEA
Ansys
Abaqus*
CATIA Elfini*
MSC Nastran*
MSC Patran*
...
6
Multi-Representation Architecture for
Design-Analysis Integration
3
Analyzable
Product Model
4 Context-Based Analysis Model
APM
2 Analysis Building Block
Printed Wiring Assembly (PWA)
1 Solution Method Model
CBAM
ABB
SMM
APM ABB
Component
Solder
Joint
Component
Solder Joint
PWB
T0
body 1
body4
ABBSMM
body3
body 2
Printed Wiring Board (PWB)
Design Tools
© 1993-2001 GTRC
Solution Tools
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
7
Analysis Building Blocks (ABBs)
Object representation of product-independent
analytical engineering concepts
Analysis Primitives
Analysis Systems
- Primitive building blocks
Material Models



LinearElastic
Continua


Bilinear
Plastic
N
Low Cycle
Fatigue
Discrete Elements
q(x)
Distributed Load
Plate
Interconnections
body 2
body 1
Rigid
Support
x
Beam
Cantilever Beam System
No-Slip
Analysis Variables
q(x)
Temperature,T
General
- User-defined systems
Stress, 
Damper
Distributed Load
© 1993-2001 GTRC
- Predefined templates
y
Plane Strain Body
Rigid
Support
Spring
Specialized
Beam
Geometry
Mass
- Containers of ABB "assemblies"
Strain, 
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
8
COB-based Libraries of
Analysis Building Blocks (ABBs)
Continuum ABBs
Extensional Rod
Material Model ABB
reference temperature, To
force, F
1D Linear Elastic Model
shear stress,
cte, 
temperature change,T
r1
r4
thermal strain, t
elastic strain, e


stress,
r3

e 
E
start, x1
shear modulus, G
 t  T
r4
F

A
  e  t
modular
re-usage
end, x2
r1
L  x2  x1
r2
e
T
t


polar moment of inertia, J
radius, r
theta end, 2
T, ,  x

r3
L
L
total elongation,L
length, L
y
Lo
T
T
G, r, ,  ,J
x
G


Trr
J

e
T
t




r3
r
L0
undeformed length, Lo
theta start, 1
F
E, A, 
 L  L  Lo
E
torque, Tr
© 1993-2001 GTRC

One D Linear
Elastic Model
strain, 
L
F
material model
Torsional Rod
L
Lo
E
r2
undeformed length, Lo
youngs modulus, E
poissons ratio, 
area, A
 T  T  To
One D Linear
Elastic Model
(no shear)
shear strain, 
r5

 
G
E
G
2(1  )
edb.r1
temperature, T
y
material model
 
r1
   2  1
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
twist, 
9
Extensional Rod Constraint Graph



Mat_sc.r1

mat.r5
 0
G
1D Linear Elastic Model
(COB re-usage)
y
G
E
2(1   )
F
E, A, 



  e  t
E
mat.r2

t
L
r4
r2
A
L  x2  x1
r1
Lo
T
© 1993-2001 GTRC
L  L  Lo
T  T  To
edb.r1
F
r3
 t  T
T
F
A
L
L
T, ,  x
L
mat.r4

L
F
mat.r3

L
Lo
G
e
e 


mat.r1
E

x1
x2
To
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
10
Multi-Representation Architecture for
Design-Analysis Integration
3
Analyzable
Product Model
4 Context-Based Analysis Model
APM
2 Analysis Building Block
Printed Wiring Assembly (PWA)
1 Solution Method Model
CBAM
ABB
SMM
APM ABB
Component
Solder
Joint
Component
Solder Joint
PWB
T0
body 1
body4
ABBSMM
body3
body 2
Printed Wiring Board (PWB)
Design Tools
© 1993-2001 GTRC
Solution Tools
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
11
Analyzable Product Models
(APMs)
Provide advanced access to design data needed by diverse analyses.
Design Applications
Solid
Modeler
Combine
information
Add reusable
multifidelity
idealizations
Analysis Applications
FEA-Based
Analysis
...
Materials
Database
Fasteners
Database
© 1993-2001 GTRC
Analyzable Product Model
(APM)
Support multidirectionality
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
FormulaBased
Analysis
12
Flap Link Geometric Model
(with idealizations)
L
B
ts2
ts1
s
sleeve1
sleeve2
shaft
rib1
rib2
ds1
ds2
B
red = idealized parameter
Leff
A, I, J
f
f
tft
tft
htotal
tfb tf
tw
wf
hw
rf
Section B-B
(at critical_cross_section)
Detailed Design
© 1993-2001 GTRC
A, I, J
A, I, J
htotal
tfb
hw
tw
htotal
tf
wf
tw
hw
wf
tapered I
Multifidelity Idealizations
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
basic I
28b
13
Flap Linkage Example
Manufacturable Product Model (MPM) = Design Description
flap_link
Extended Constraint Graph
L
w
sleeve_1
A
ts
ts1
2
t
Sleeve 1
r
Sleeve 2
Shaft
ds1
x
A
ds2
w
sleeve_2
R1
t
r
x
Product Attribute
shaft
Ri
cross_section
Product Relation
wf
tw
t1f
t2f
rib_1
b
h
t
rib_2
R2
b
h
t
material
© 1993-2001 GTRC
R3
COB Structure (COS)
COB flap_link SUBTYPE_OF part;
part_number
: STRING;
inter_axis_length, L
: REAL;
sleeve1
: sleeve;
sleeve2
: sleeve;
shaft
: tapered_beam;
rib1
: rib;
rib2
: rib;
RELATIONS
PRODUCT_RELATIONS
pr2 : "<inter_axis_length> == <sleeve2.origin.y> <sleeve1.origin.y>";
pr3 : "<rib1.height> == (<sleeve1.width> <shaft.cross_section.design.web_thickness>)/2";
pr4 : "<rib2.height> == (<sleeve2.width> <shaft.cross_section.design.web_thickness>)/2";
...
END_COB;
name
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
14
Flap Linkage Example
Analyzable Product Model (APM) = MPM Subset + Idealizations
flap_link
Extended Constraint Graph
effective_length
L
A
ts
ts1
w
sleeve_1
t
2
s
Sleeve 1
Sleeve 2
Shaft
ds1
r
ds2
A
x
Leff
w
sleeve_2
R1
t
R1
r
R2
x
Product Attribute
shaft
Ri
cross_section
Product Relation
wf
R3
tw
R4
t1f
Idealized Attribute
Ri
effective_length, Leff ==
inter_axis_length (sleeve1.hole.cross_section.radius +
sleeve2.hole.cross_section.radius)
Partial COB Structure (COS)
R6
R5
t2f
critical_section
critical_detailed
Idealization Relation
wf
tw
rib_1
R11
hw
b
R7
t1f
h
t
rib_2
t2f
R2
b
critical_simple
wf
h
t
material
tw
R3
name
stress_strain_model
© 1993-2001 GTRC
R8
area
linear_elastic
E
hw

tf
cte
area
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
R9
R10
R12
15
Concurrent Multi-Fidelity
Cross-Section Representations
A, I, J
f
tft
tft
htotal
tfb
tf
A, I, J
A, I, J
f
tw
hw
rf
wf
Section B-B
(at critical_cross_section)
Detailed Design
htotal
tfb
hw
tw
htotal
tf
tw
wf
hw
wf
tapered I
basic I
Multifidelity Idealizations
MULTI_LEVEL_COB cross_section;
design : filleted_tapered_I_section;
Detailed Design Cross-Section
tapered : tapered_I_section;
Idealized Cross-Sections
basic : basic_I_section;
Associativity Relations between
RELATIONS
Cross-Section Fidelities
PRODUCT_IDEALIZATION_RELATIONS
pir8 : "<basic.total_height> == <design.total_height>";
pir9 : "<basic.flange_width> == <design.flange_width>";
pir10 : "<basic.flange_thickness> == <design.flange_base_thickness>";
pir11 : "<basic.web_thickness> == <design.web_thickness>";
pir12 : "<tapered.total_height> == <design.total_height>";
pir13 : "<tapered.flange_width> == <design.flange_width>";
pir14 : "<tapered.flange_base_thickness> == <design.flange_base_thickness>";
pir15 : "<tapered.flange_taper_thickness> == <design.flange_taper_thickness>";
pir16 : "<tapered.flange_taper_angle> == <design.flange_taper_angle>";
pir17 : "<tapered.web_thickness> == <design.web_thickness>";
END_MULTI_LEVEL_COB;
© 1993-2001 GTRC
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
16
Flap Link APM
Implementation in CATIA v5
Design-Idealization
Relation
Design Model
flap_link
Extended Constraint Graph
effective_length
w
sleeve_1
t
r
x
w
sleeve_2
R1
t
R1
r
R2
x
Product Attribute
shaft
Ri
cross_section
Product Relation
wf
R3
tw
R4
t1f
Idealized Attribute
Ri
Idealized Model
R6
R5
t2f
critical_section
critical_detailed
Idealization Relation
wf
tw
rib_1
R11
hw
b
R7
t1f
h
t
rib_2
t2f
R2
critical_simple
wf
h
t
material
© 1993-2001 GTRC
R8
area
b
tw
R3
E
name
stress_strain_model
linear_elastic
hw

tf
cte
area
R9
R10
R12
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
17
Multi-Representation Architecture for
Design-Analysis Integration
3
Analyzable
Product Model
4 Context-Based Analysis Model
APM
2 Analysis Building Block
Printed Wiring Assembly (PWA)
1 Solution Method Model
CBAM
ABB
SMM
APM ABB
Component
Solder
Joint
Component
Solder Joint
PWB
T0
body 1
body4
ABBSMM
body3
body 2
Printed Wiring Board (PWB)
Design Tools
© 1993-2001 GTRC
Solution Tools
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
18
COB-based Constraint Schematic
for Multi-Fidelity CAD-CAE Interoperability
Flap Link Benchmark Example
Design Tools
Analysis Building Blocks
(ABBs)
MCAD Tools
CATIA, I-DEAS*
Pro/E* , UG *, ...
Analysis Modules
of Diverse Behavior & Fidelity
(CBAMs)
Continuum ABBs:
y
Material Model ABB:
 

G 
E
2 (1  r5
)
e 
cte, 

T
t


area, A
T, ,  x
Extension
r3
r2
undeformed length, Lo

e
shear strain, 
 t  T
youngs modulus, E
poissons ratio, 

r4
force, F
G
F
E, A, 
E
reference temperature, To
1D Linear Elastic Model
shear stress, 
L
Lo
One D Linear
F
Elastic Model
(no shear)
edb.r1
temperature, T
L
material model
Extensional Rod
Flap Link Extensional Model
total elongation,L
r1
start, x1
shear modulus, G
linkage
effective length, Leff
Extensional Rod
(isothermal)
al1
E
temperature change, T
r4
thermal strain, t
y
material model
elastic strain, e

Torsional Rod
strain, 
r3
stress, 
One D Linear
T
Elastic Model
r2
E
torque, Tr

polar moment of inertia, J

radius, r
mode: shaft tension
Lo
material
x
area, A
cross section
T
G, r, ,  ,J
L
L
x2
al2
linear elastic model
A
youngs modulus, E al3
reaction
condition
G
E

F

stress mos model
e
T
t




Margin of Safety
(> case)
1D
allowable stress
allowable
General Math
Mathematica
Matlab*
MathCAD*
...
actual
r3
MS
undeformed length, Lo
r1
theta start, 1
theta end, 2
twist, 
Flap Link Plane Strain Model
inter_axis_length
linkage
deformation model
Parameterized
FEA Model
sleeve_1
w
sleeve_2
w
shaft
cross_section:basic
t
L
ws1
r
Legend
Tool Associativity
Object Re-use
ts1
rs2
t
2D
mode: tension
ux,max
ws2
r
ts2
x,max
rs2
wf
wf
tw
tw
tf
tf
material
E
name
E

linear_elastic_model

F
condition reaction
flap_link
effective_length
allowable stress
L
B
sleeve_1
w
sleeve_2
w
ts2
ts1
s
sleeve1
allowable inter axis length change
t
ux mos model
stress mos model
r
Margin of Safety
(> case)
Margin of Safety
(> case)
allowable
allowable
actual
actual
MS
MS
x
sleeve2
shaft
rib1
R1
t
rib2
R1
r
R2
x
ds1
ds2
B
shaft
cross_section
wf
R3
tw
R4
t1f
Leff
R6
R5
deformation model
t2f
critical_section
critical_detailed
Torsional Rod
wf
linkage
tw
Materials Libraries
In-House, ...
Parts Libraries
In-House*, ...
rib_1
Lo
t
t2f
R2
critical_simple
wf
h
t
tw
R3
E
name
stress_strain_model
mode: shaft torsion
R8
area
b
linear_elastic
hw

tf
cte
area
R9
Torsion
R10

1
R7
h
material
al1
b
t1f
rib_2
effective length, Leff
R11
hw
cross section:
effective ring
material
condition
polar moment of inertia, J
al2a
outer radius, ro
al2b
linear elastic model
reaction
allowable stress
R12
twist mos model
Margin of Safety
(> case)
Analyzable Product Model
(APM)
* = Item not yet available in toolkit (all others have working examples)
© 1993-2001 GTRC
Lo
x1
length, L
end, x2
r1
Analysis Tools
(via SMMs)
1D
allowable
al3
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
shear modulus, G
2
FEA
Ansys
Abaqus*
CATIA Elfini*
MSC Nastran*
MSC Patran*
...
Flap Link Torsional Model
19
Tutorial Example:
Flap Link Analysis Template (CBAM)
(1a) Analysis Template: Flap Link Extensional Model
CBAM
Flap Link Analysis Documentation
(2) Torsion Analysis
(1) Extension Analysis
a. 1D Extensional Rod
1. Behavior: Shaft Tension
L
A
ts2
ts1
s
Sleeve 1
Shaft
ds1
2. Conditions:
10000
lbs
linkage
3. Part Features: (idealized)
in
effective length, Leff
APM
1020 HR Steel
Geometry
mode: shaft tension
cross section
material
A = 1.125 in2 E=
30e6
allowable  18000
4. Analysis Calculations:
F
L  Leff
A

E
5. Conclusion:
MS 
E, A
 allowable
 1  1.025

b. 2D Plane Stress FEA
...
psi
psi
condition
area, A
al1
P
, 
x
Extensional Rod
(isothermal)
L
Lo
x1
al2
youngs modulus, E al3
reaction
L
deformation model
Material Models
linear elastic model
L
Leff
P
Leff
Flaps down : F =
5.0
y
(idealization usage)
ds2
A
Leff =
Sleeve 2
CAD-CAE
Associativity
ABB
L
x2
A
E

F

SMM
stress mos model
Margin of Safety
(> case)
allowable
ABB
allowable stress
actual
MS
Boundary Condition Objects
Pullable
Views*
(links to other analyses)*
Solution Tool
Interaction
* Boundary condition objects & pullable views are WIP concepts*
© 1993-2001 GTRC
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
20
Test Case
Flap Linkage: Analysis Template Reuse of APM
Linkage Extensional Model (CBAM)
L
A
ts1
L
ts2
s
Sleeve 1
Sleeve 2
Shaft
ds1
F
ds2
A
L
Lo
F
E, A,
Leff
T, ,  x
deformation model
linkage
mode: shaft tension
Flap link (APM)
flap_link
material
condition
effective_length
al1
area, A
al2
linear elastic model
reaction
youngs modulus, E al3
Extensional Rod
(isothermal)
Lo
x1
x2
A
E
F
L
L


w
sleeve_1
stress mos model
t
r
Margin of Safety
(> case)
x
w
sleeve_2
allowable
actual
MS
R1
t
R1
r
allowable stress
R2
x
shaft
cross section
effective length, Leff
cross_section
wf
R3
tw
R4
t1f
R6
R5
t2f
critical_section
critical_detailed
wf
tw
rib_1
R11
hw
b
R7
t1f
h
t
rib_2
t2f
R2
b
critical_simple
t
wf
tw
R3
name
stress_strain_model
© 1993-2001 GTRC
R8
area
h
material
reusable idealizations
linear_elastic
E
hw

tf
cte
area
R9
R10
R12
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
21
Test Case
Flap Linkage: Analysis Template Reuse of ABBs
Linkage Extensional Model (CBAM)
L
A
ts1
L
ts2
s
Sleeve 1
Sleeve 2
Shaft
ds1
F
ds2
A
L
Lo
F
E, A,
Leff
T, ,  x
deformation model
linkage
mode: shaft tension
cross section
material
condition
effective length, Leff
al1
area, A
al2
linear elastic model
reaction
youngs modulus, E al3
Extensional Rod
(isothermal)
Lo
x1
x2
A
E
F
L
L


stress mos model
Margin of Safety
(> case)
Extensional Rod (generic ABB)
y
L
L
Lo
F
material model
E
youngsmodulus,
mv6
cte, 
mv5
T
temperature,
sr1
area,A
r4

F
A
allowable stress
F
E, A,
T, ,  x
One D Linear
Elastic Model
(no shear)
E
To T  T To
reference temperature,
force,F
allowable
actual
MS

smv1
e
T
mv4
t


mv2
e
elastic strain,
mv3
t
thermal strain,

strain,
mv1

stress,
modular reusage
T
temperature change,
r2
undeformed
length,Lo
start,x1
r1
end,x2
L  x2  x1
© 1993-2001 GTRC
L  L  Lo

L
L
r3
L
total elongation,
length,L
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
22
Flap Linkage Extensional Model:
Lexical COB Structure
COB link_extensional_model SUBTYPE_OF link_analysis_model;
DESCRIPTION
Represents 1D formula-based extensional model.;
y
L
L
ANALYSIS_CONTEXT
P
E, A
, 
PART_FEATURE
deformation model
link : flap_link
Extensional Rod
(isothermal)
linkage
al1
effective length, L
BOUNDARY_CONDITION_OBJECTS
L
L
associated_condition : condition;
x
L
x
MODE
mode: shaft tension
area, A
cross section
al2
A
material linear elastic model
youngs modulus, E al3
tension;
E

reaction
condition
F

OBJECTIVES
stress mos model
stress_mos_model : margin_of_safety_model;
Margin of Safety
ANALYSIS_SUBSYSTEMS
(> case)
allowable stress
allowable
deformation_model : extensional_rod_isothermal;
actual
RELATIONS
MS
PART_FEATURE_ASSOCIATIVITIES
al1 : "<deformation_model.undeformed_length> == <link.effective_length>";
al2 : "<deformation_model.area> == <link.shaft.critical_cross_section.basic.area>";
al3 : "<deformation_model.material_model.youngs_modulus> ==
<link.material.stress_strain_model.linear_elastic.youngs_modulus>";
al4 : "<deformation_model.material_model.name> == <link.material.name>";
BOUNDARY_CONDITION_ASSOCIATIVITIES
al5 : "<deformation_model.force> == <associated_condition.reaction>";
OBJECTIVE_ASSOCIATIVITIES
al6 : "<stress_mos_model.allowable> == <link.material.yield_stress>";
al7 : "<stress_mos_model.determined> == <deformation_model.material_model.stress>";
END_COB;
L
A
ts2
ts1
eff
s
Sleeve 1
L
P
Sleeve 2
Shaft
ds1
x
ds2
A
Leff
eff
o
1
2
© 1993-2001 GTRC
Desired categorization of attributes is shown above (as manually inserted) to support pullable views.
Categorization
capabilities
is a planned
XaiTools extension.
Georgia
Tech  Engineering
Information Systems
Lab  eislab.gatech.edu
23
Flap Linkage Extensional Model
Example COB Instance
Flap Link Analysis Documentation
Constraint Schematic Instance
(2) Torsion Analysis
deformation model
(1) Extension Analysis
a. 1D Extensional Rod
1. Behavior: Shaft Tension
linkage Flap Link #3
effective length,
Leff
5.0 in
2. Conditions:
mode: shaft tension
Flaps down : F =
10000
critical_cross
_section
shaft
lbs
material
condition
3. Part Features: (idealized)
reaction
5.0
in
1020 HR Steel
A = 1.125 in2 E=
30e6
allowable  18000
4. Analysis Calculations:
F
L  Leff
A
psi
psi
2
1.125 in
area, A
al2
linear elastic model youngs modulus,E al3
steel
30e6 psi
10000 lbs
Leff =
basic
Extensional Rod
(isothermal)
al1
Lo
L
x1
L
1.43e-3 in
x2
A
8888 psi
E

F

description
flaps mid position
stress mos model
Margin of Safety
18000 psi
(> case)
allowable stress
allowable
actual

MS
1.025
example 1, state 1
E
5. Conclusion:
MS 
 allowable
 1  1.025

b. 2D Plane Stress FEA
...
© 1993-2001 GTRC
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
24
Flap Link Extensional Model
COB-based Analysis Template (CBAM) - in XaiTools
Library data for
materials
Detailed CAD data
from CATIA
Idealized analysis features
in APM
Modular generic analysis templates
(ABBs)
Explicit multi-directional associativity
between design & analysis
© 1993-2001 GTRC
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
25
Flap Linkage Instance
with Multi-Directional I/O States
deformation model
linkage
Flap Link #3
Leff
effective length,
5.0 in
mode: shaft tension
critical_cross
_section
shaft
material
condition
reaction
basic
2
1.125 in
area, A
al2
linear elastic model youngs modulus,E al3
steel
30e6 psi
10000 lbs
Extensional Rod
(isothermal)
al1
Lo
L
x1
L
1.43e-3 in
- Input: design details
- Output:
i) idealized design parameters
ii) physical response criteria
x2
A
8888 psi
E

F

Design Verification
description
flaps mid position
stress mos model
Margin of Safety
18000 psi
(> case)
allowable stress
allowable
actual
MS
example 1, state 1
1.025
deformation model
Design Synthesis
- Input: desired physical
response criteria
- Output:
i) idealized design
parameters
(e.g., for sizing), or
ii) detailed design
parameters
© 1993-2001 GTRC
5.0 in
effective length, Leff
linkage Flap Link #3
al1
0.555 in2
mode: shaft tension
condition
1.125 in2
shaft
critical_cross
_section
material
linear elastic model
reaction
10000 lbs
steel
basic
area, A
al2
X
youngs modulus, E al3
30e6 psi
Extensional Rod
(isothermal)
Lo
L
x1
L
3.00e-3 in
x2
A
E

F

18000 psi
description
flaps mid position
stress mos model
Margin of Safety
(> case)
18000psi
allowable stress
allowable
actual
MS
0.0
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
example 1, state 3
26
COB-based Constraint Schematic
for Multi-Fidelity CAD-CAE Interoperability
Flap Link Benchmark Example
Design Tools
Analysis Building Blocks
(ABBs)
MCAD Tools
CATIA, I-DEAS*
Pro/E* , UG *, ...
Analysis Modules
of Diverse Behavior & Fidelity
(CBAMs)
Continuum ABBs:
y
Material Model ABB:
 

G 
E
2 (1  r5
)
e 
cte, 

T
t


area, A
T, ,  x
Extension
r3
r2
undeformed length, Lo

e
shear strain, 
 t  T
youngs modulus, E
poissons ratio, 

r4
force, F
G
F
E, A, 
E
reference temperature, To
1D Linear Elastic Model
shear stress, 
L
Lo
One D Linear
F
Elastic Model
(no shear)
edb.r1
temperature, T
L
material model
Extensional Rod
Flap Link Extensional Model
total elongation,L
r1
start, x1
shear modulus, G
linkage
effective length, Leff
Extensional Rod
(isothermal)
al1
E
temperature change, T
r4
thermal strain, t
y
material model
elastic strain, e

Torsional Rod
strain, 
r3
stress, 
One D Linear
T
Elastic Model
r2
E
torque, Tr

polar moment of inertia, J

radius, r
mode: shaft tension
Lo
material
x
area, A
cross section
T
G, r, ,  ,J
L
L
x2
al2
linear elastic model
A
youngs modulus, E al3
reaction
condition
G
E

F

stress mos model
e
T
t




Margin of Safety
(> case)
1D
allowable stress
allowable
General Math
Mathematica
Matlab*
MathCAD*
...
actual
r3
MS
undeformed length, Lo
r1
theta start, 1
theta end, 2
twist, 
Flap Link Plane Strain Model
inter_axis_length
linkage
deformation model
Parameterized
FEA Model
sleeve_1
w
sleeve_2
w
shaft
cross_section:basic
t
L
ws1
r
Legend
Tool Associativity
Object Re-use
ts1
rs2
t
2D
mode: tension
ux,max
ws2
r
ts2
x,max
rs2
wf
wf
tw
tw
tf
tf
material
E
name
E

linear_elastic_model

F
condition reaction
flap_link
effective_length
allowable stress
L
B
sleeve_1
w
sleeve_2
w
ts2
ts1
s
sleeve1
allowable inter axis length change
t
ux mos model
stress mos model
r
Margin of Safety
(> case)
Margin of Safety
(> case)
allowable
allowable
actual
actual
MS
MS
x
sleeve2
shaft
rib1
R1
t
rib2
R1
r
R2
x
ds1
ds2
B
shaft
cross_section
wf
R3
tw
R4
t1f
Leff
R6
R5
deformation model
t2f
critical_section
critical_detailed
Torsional Rod
wf
linkage
tw
Materials Libraries
In-House, ...
Parts Libraries
In-House*, ...
rib_1
Lo
t
t2f
R2
critical_simple
wf
h
t
tw
R3
E
name
stress_strain_model
mode: shaft torsion
R8
area
b
linear_elastic
hw

tf
cte
area
R9
Torsion
R10

1
R7
h
material
al1
b
t1f
rib_2
effective length, Leff
R11
hw
cross section:
effective ring
material
condition
polar moment of inertia, J
al2a
outer radius, ro
al2b
linear elastic model
reaction
allowable stress
R12
twist mos model
Margin of Safety
(> case)
Analyzable Product Model
(APM)
* = Item not yet available in toolkit (all others have working examples)
© 1993-2001 GTRC
Lo
x1
length, L
end, x2
r1
Analysis Tools
(via SMMs)
1D
allowable
al3
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
shear modulus, G
2
FEA
Ansys
Abaqus*
CATIA Elfini*
MSC Nastran*
MSC Patran*
...
Flap Link Torsional Model
27
FEA-based Analysis Subsystem
Used in Linkage Plane Stress Model (2D Analysis Problem)
Plane Stress Bodies
y
Higher fidelity version
vs. Linkage Extensional Model
ts2
tf
wf
ts1
ws1
tw
rs1
ws2
F
rs2
C
L x
L
inter_axis_length
linkage
sleeve_1
deformation model
Parameterized
FEA Model
L
w
t
sleeve_2
r
ws1
w
ts1
rs2
ws2
t
mode: tension
r
ts2
ABBSMM
SMM Template
ux,max
x,max
rs2
shaft
cross_section:basic
wf
tw
tf
wf
tw
tf
material
E
name

linear_elastic_model
condition reaction
allowable stress
E

F
allowable inter axis length change
© 1993-2001 GTRC
ux mos model
stress mos model
Margin of Safety
(> case)
Margin of Safety
(> case)
allowable
allowable
actual
actual
MS
MS
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
28
SMM with Parameterized FEA Model
Flap Link Plane Stress Model
ANSYS Prep7 Template
Preprocessor Model Figure
@EX1@ = Parameters populated by context ABB
/prep7
Plane Stress Bodies
y
! element type
et,1,plane42
ts2
tf
wf
ts1
ws1
tw
rs1
ws2
F
L
rs2
C
L x
! material properties
mp,ex,1,@EX@
mp,nuxy,1,@NIUX@
! geometric parameters
L
= @L@
ts1
= @TS1@
rs1
= @RS1@
tf
= @TF@
...
! elastic modulus
! Poissons ratio
!
!
!
!
length
thickness of sleeve1
radius of sleeve1 (rs1<rs2)
thickness of shaft flange
! key points
k,1,0,0
k,2,0,rs1+ts1
k,3,-(rs1+ts1)*sin(phi),(rs1+ts1)*cos(phi)
...
! lines
LARC,3,2,1,rs1+ts1,
LARC,7,3,1,rs1+ts1,
...
! areas
FLST,2,4,4
AL,P51X
...
© 1993-2001 GTRC
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
29
COB-based Constraint Schematic
for Multi-Fidelity CAD-CAE Interoperability
Flap Link Benchmark Example
Design Tools
Analysis Building Blocks
(ABBs)
MCAD Tools
CATIA, I-DEAS*
Pro/E* , UG *, ...
Analysis Modules
of Diverse Behavior & Fidelity
(CBAMs)
Continuum ABBs:
y
Material Model ABB:
 

G 
E
2 (1  r5
)
e 
cte, 

T
t


area, A
T, ,  x
Extension
r3
r2
undeformed length, Lo

e
shear strain, 
 t  T
youngs modulus, E
poissons ratio, 

r4
force, F
G
F
E, A, 
E
reference temperature, To
1D Linear Elastic Model
shear stress, 
L
Lo
One D Linear
F
Elastic Model
(no shear)
edb.r1
temperature, T
L
material model
Extensional Rod
Flap Link Extensional Model
total elongation,L
r1
start, x1
shear modulus, G
linkage
effective length, Leff
Extensional Rod
(isothermal)
al1
E
temperature change, T
r4
thermal strain, t
y
material model
elastic strain, e

Torsional Rod
strain, 
r3
stress, 
One D Linear
T
Elastic Model
r2
E
torque, Tr

polar moment of inertia, J

radius, r
mode: shaft tension
Lo
material
x
area, A
cross section
T
G, r, ,  ,J
L
L
x2
al2
linear elastic model
A
youngs modulus, E al3
reaction
condition
G
E

F

stress mos model
e
T
t




Margin of Safety
(> case)
1D
allowable stress
allowable
General Math
Mathematica
Matlab*
MathCAD*
...
actual
r3
MS
undeformed length, Lo
r1
theta start, 1
theta end, 2
twist, 
Flap Link Plane Strain Model
inter_axis_length
linkage
deformation model
Parameterized
FEA Model
sleeve_1
w
sleeve_2
w
shaft
cross_section:basic
t
L
ws1
r
Legend
Tool Associativity
Object Re-use
ts1
rs2
t
2D
mode: tension
ux,max
ws2
r
ts2
x,max
rs2
wf
wf
tw
tw
tf
tf
material
E
name
E

linear_elastic_model

F
condition reaction
flap_link
effective_length
allowable stress
L
B
sleeve_1
w
sleeve_2
w
ts2
ts1
s
sleeve1
allowable inter axis length change
t
ux mos model
stress mos model
r
Margin of Safety
(> case)
Margin of Safety
(> case)
allowable
allowable
actual
actual
MS
MS
x
sleeve2
shaft
rib1
R1
t
rib2
R1
r
R2
x
ds1
ds2
B
shaft
cross_section
wf
R3
tw
R4
t1f
Leff
R6
R5
deformation model
t2f
critical_section
critical_detailed
Torsional Rod
wf
linkage
tw
Materials Libraries
In-House, ...
Parts Libraries
In-House*, ...
rib_1
Lo
t
t2f
R2
critical_simple
wf
h
t
tw
R3
E
name
stress_strain_model
mode: shaft torsion
R8
area
b
linear_elastic
hw

tf
cte
area
R9
Torsion
R10

1
R7
h
material
al1
b
t1f
rib_2
effective length, Leff
R11
hw
cross section:
effective ring
material
condition
polar moment of inertia, J
al2a
outer radius, ro
al2b
linear elastic model
reaction
allowable stress
R12
twist mos model
Margin of Safety
(> case)
Analyzable Product Model
(APM)
* = Item not yet available in toolkit (all others have working examples)
© 1993-2001 GTRC
Lo
x1
length, L
end, x2
r1
Analysis Tools
(via SMMs)
1D
allowable
al3
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
shear modulus, G
2
FEA
Ansys
Abaqus*
CATIA Elfini*
MSC Nastran*
MSC Patran*
...
Flap Link Torsional Model
30
Flap Linkage Torsional Model
Diverse Mode (Behavior) vs. Linkage Extensional Model
L
A
ts2
ts1
s
Sleeve 1
Sleeve 2
Shaft
ds1
ds2
A
deformation model
Leff
Torsional Rod
linkage
effective length, Leff
al1
Lo

1
mode: shaft torsion
cross section:
effective ring
material
condition
polar moment of inertia, J
al2a
outer radius, ro
al2b
linear elastic model
reaction
allowable stress
twist mos model
Margin of Safety
(> case)
allowable
© 1993-2001 GTRC
shear modulus, G
al3
2
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
31
An Introduction to X-Analysis Integration (XAI)
Short Course Outline
Part 1: Constrained Objects (COBs) Primer
Part 2: Multi-Representation Architecture (MRA) Primer
(Highlights in proceedings)
– Analysis Integration Challenges
Flap Link:
– Overview of COB-based XAI
A High Diversity Example
– Ubiquitization Methodology
Example Applications
» Airframe Structural Analysis
» Circuit Board Thermomechanical Analysis
» Chip Package Thermal Analysis
– Summary
Part 3: Advanced Topics & Current Research
– Progress towards Multi-Functional Optimization
© 1993-2001 GTRC
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
32
Flexible High Diversity Design-Analysis Integration
Phase 1 Airframe Examples:
“Bike Frame” / Flap Support Inboard Beam
Design Tools
strength model
product structure
(channel fitting joint) bolt BLE7K18
head
end pad
fitting
hole
radius, r1
0.4375 in
radius, ro
0.5240 in
1.267 in
eccentricity, e
2.088 in
height, h
0.0000 in
radius, r2
thickness, tb
0.307 in
thickness, tw
0.310 in
r2
tb
tw
a
1.770 in
angled height, a
material
IAS Function
Ref D6-81766
h
hole
wall
e
te
0.5 in
thickness, te
Channel Fitting
Static Strength Analysis
r1
r0
b
2.440 in
width, b
mode: (ultimate static strength)
base
MCAD Tools
CATIA
Modular, Reusable
Template Libraries
rear spar fitting attach point
analysis context
max allowable ultimate stress, Ftu
67000 psi
Ftu
65000 psi
diagonal brace lug joint
analysis context
product structure (lug joint)
allowable ultimate long transverse stress, FtuLT
FtuLT
57000 psidiameters
lugs max allowable yield stress, Fty
LF[tyk] k = norm
L [ j:1,n ] max allowable
52000 psi
F diameter
j = top long transverse stress,
normaltyLT
, Dnorm FtyLT Dk
hole
lugj shear
39000 psi
max allowable
stress, Fsu oversize diameter,
D
F
over
condition:
mode (ultimate static strength)
load, Pu
Pu
material
max allowable ultimate stress,
jm FtuL
r1
Plug
Program
Plug joint
L29 -300
Part
Outboard TE Flap, Support
No 2;
n
8.633
K 123L4567
Inboard
Beam,
objective
deformation model
Lug Axial Ultimate
Strength Model
D
0.7500 in
5960
effective width,
W Ibs
1.6000 in
MSwall
9.17
BDM 6630
MSepb
t
MSeps
e
W
5.11
9.77
Kaxu
0.7433
Paxu
14.686 K
7050-T7452, MS 7-214
heuristic: overall fitting factor, Jm 1
Max. torque brake setting
detent 30, 2=3.5º
condition
su
0.067 in/in
plastic ultimate strain, epu
epu
2
0.35 in
thickness,
size,n ultimate strain long transverse,
epuLT t 0.030 in/in
plastic
epuLT
10000000
psi
edge margin,
e
0.7500 E
in
young modulus of elasticity, E
2G7T12U (Detent 0, Fairing Condition 1)
Analysis Modules (CBAMs)
of Diverse Feature:Mode, & Fidelity
Plug joint
F tuax
Channel Fitting67 Ksi
Template
4.317 K
Static Strength Analysis
Dataset
XaiTools
1 of 1
Bulkhead Fitting Joint
Feature
Margin
of Safety
(> case)
actual
estimated axial ultimate strength
allowable
MS
2.40
Program
L29 -300
Part
Outboard TE Flap, Support No 2;
Inboard Beam, 123L4567
Feature
Diagonal Brace Lug Joint
Template Lug Joint
Axial Ultimate Strength Model
Dataset
j = top lug
k = normal diameter
(1 of 4)
1.5D
Image API
(CATGEO)
Analyzable
Product Model
XaiTools
Lug:
Axial/Oblique;
Ultimate/Shear
Assembly:
Ultimate/
FailSafe/Fatigue*
FASTDB-like
In-House
Codes
Fitting:
Bending/Shear
3D
Fasteners DB
General Math
Mathematica
1.5D
Materials DB
MATDB-like
Analysis Tools
FEA
Elfini*
* = Item not yet available in toolkit (all others have working examples)
© 1993-2001 GTRC
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
33
Bike Frame Bulkhead Fitting Analysis
COB-based Analysis Template (CBAM) - Constraint Schematic
bulkhead fitting attach point
analysis context
product structure
(channel fitting joint) bolt LE7K18
end pad
fitting
strength model
head
hole
mode: (ultimate static strength)
radius, r1
0.4375 in
radius, ro
0.5240 in
width, b
2.440 in
eccentricity, e
1.267 in
0.5 in
thickness, te
2.088 in
height, h
base
wall
material
condition:
radius, r2
0.0000 in
thickness, tb
0.307 in
thickness, tw
0.310 in
angled height, a
1.770 in
max allowable ultimate stress, Ftu
67000 psi
© 1993-2001 GTRC
max allowable long transverse stress, FtyLT
52000 psi
max allowable shear stress, Fsu
39000 psi
plastic ultimate strain, epu
0.067 in/in
plastic ultimate strain long transverse, epuLT
0.030 in/in
young modulus of elasticity, E
load, Pu
heuristic: overall fitting factor, Jm
10000000 psi
5960 Ibs
1
e
te
IAS Function
Ref DM 6-81766
r2
tb
tw
a
Ftu
FtuLT
Fty
FtyLT
MSwall
9.17
MSepb
5.11
MSeps
9.77
Fsu
epu
epuLT
E
Pu
jm
Program
L29 -300
Part
Outboard TE Flap, Support No 2;
Inboard Beam, 123L4567
Feature
r0
b
Channel Fitting
Static Strength Analysis
h
hole
65000 psi
allowable ultimate long transverse stress, FtuLT
57000 psi
max allowable yield stress, Fty
2G7T12U (Detent 0, Fairing Condition 1)
r1
Template Channel Fitting
Static Strength Analysis
Dataset
1 of 1
Bulkhead
Fitting
Georgia
TechJoint
 Engineering Information Systems Lab  eislab.gatech.edu
34
Lug Template Applied to Bike Frame
b
c
R
CAD-CAE
Associativity
analysis context
L [ j:1,n ]
e
deformation model
diameters
L [ k] k = norm
Dk
normal diameter, Dnorm
oversize diameter, Dover
j = top
lugj
product structure (lug joint)
CBAM
 = f( c , b , R )
W = f( R , D ,  )
(idealization usage)
lugs
diagonal brace lug joint
hole
Geometry
2
APM
size,n
mode (ultimate static strength)
Max. torque brake setting
detent 30, 2=3.5º
thickness, t
0.35 in
edge margin, e
condition
Plug joint
Plug
0.7500 in
ABB
e
W
Kaxu
0.7433
Paxu
14.686 K
F tuax
67 Ksi
4.317 K
n
Boundary Condition Objects
8.633 K
objective
DM 6630
t
max allowable ultimate stress, FtuL
r1
D
Material Models
material
Plug joint
Lug Axial Ultimate
Strength Model
0.7500 in
effective width, W 1.6000 in
7050-T7452, MS 7-214

D
axial direction
SMM
(links to other analyses)*
Margin of Safety
(> case)
actual
estimated axial ultimate strength
allowable
ABB
MS
Pullable
Views*
© 1993-2001 GTRC
2.40
Program
L29 -300
Part
Outboard TE Flap, Support No 2;
Inboard Beam, 123L4567
Feature
Diagonal Brace Lug Joint
Template Lug Joint
Axial Ultimate Strength Model
Dataset
j = top lug
k = normal diameter
(1 of 4)
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
Solution Tool
Interaction
*WIP items
35
ProAM Design-Analysis Integration
Electronic Packaging Examples: PWA/B
Design Tools
y
mv6
reference temperature, To
E
T  T L To
A
ts1
ts2

s
Sleeve 1
Shaft
Sleeve 2
smv1
ds1
force, F
area, A
ECAD Tools
Mentor Graphics,
Accel*
A
r4
F
A
Leff
linkage

mv4
L
F
E, A, 
T, ,  x
One D Linear
Elastic Model
(no shear)
mv5
sr1
temperature, T
L
Lo
F
material model
youngs modulus, E
cte, 
ds2
e
T
t


elastic strain, e
mv2
thermal strain, t
mv3
strain,
mv1
effective length, Leff
r2
undeformed length, Lo
start, x1
end, x2
cross section:
effective ring
L  L  Lo
condition
r1
L  x2  x1
material

polar moment of inertia, J
L
r3 ro
outer radius,
L
linear elastic model
Margin of Safety
(> case)
allowable
al3
total elongation,L
length, L
allowable stress
twist mos model
al2a
al2b
shear modulus, G
reaction
deformation model
Torsional Rod
stress,al1

temperature change,T
mode: shaft torsion
Lo

Modular, Reusable
Template Libraries
1
2
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
STEP AP210‡
GenCAM**,
PDIF*
PWB Stackup Tool
XaiTools PWA-B
Analysis Modules (CBAMs)
of Diverse Mode & Fidelity
Analyzable
Product Model
XaiTools
PWA-B
Solder Joint 1D,
Deformation* 2D,
3D
XaiTools Analysis Tools
PWA-B
General Math
Mathematica
FEA Ansys
PWB
Warpage
1D,
2D
Laminates DB
PTH
1D,
Deformation 2D
& Fatigue**
Materials DB
‡ AP210 DIS WD1.7
© 1993-2001 GTRC
* = Item not yet available in toolkit (all others have working examples)
** = Item available via U-Engineer.com
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
36
PWB Warpage Modules
a.k.a. CBAMs: COB-based analysis templates
APM
PWB Thermal Bending Model
(1D formula-based)
ABB
deformation model
Thermal
Bending Beam
pwa
associated_pwb
total diagonal
al1
total thickness
coefficient of thermal bending
associated condition
al3
 b L2 T
t
SMM

T
al4
T
al5
wrapage mos model
Margin
of Safety
actual
MS

t
b
temperature
reference temperature
allowable
L
al2
Treference
APM
warpage
ABB
al6
pwa
associated_pwb
deformation model
Parameterized
FEA Model
TOTAL
total_thickness
layup
layers[0]
nominal_thickness
layers[1]
prepregs[0]
nominal_thickness
layers[2]
top_copper_layer
nominal_thickness
related_core
nominal_thickness
primary_structure_material linear_elastic_model
PWB Plane Strain Model
(2D formula-based)
CU1T
PREPREGT
CU2T
E
EXCU
cte
ALPXCU
layers[3]
prepregs[0]
UX
POLYT
nominal_thickness
UY
SX
TETRA1T
primary_structure_material linear_elastic_model E
EXEPGL
cte
ALPXEGL
condition
reference temperature
TO
temperature
ux mos model
DELTAT
Margin of Safety
(> case)
allowable
actual
MS
© 1993-2001 GTRC
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
37
Flexible High Diversity Design-Analysis Integration
Electronic Packaging Examples: Chip Packages/Mounting
Shinko Electric Project: Phase 1 (completed 9/00)
Design Tools
y
mv6
mv5
reference temperature, To
E
T  T L To
A
ts1
ts2
Shaft
Sleeve 2
smv1
ds1
area, A
r4
F

A
A
Leff
linkage
e

s
Sleeve 1
force, F
mv4
L
F
E, A, 
T, ,  x
One D Linear
Elastic Model
(no shear)
sr1
temperature, T
L
Lo
F
material model
youngs modulus, E
cte, 
ds2
T
t


mv2
elastic strain, e
mv3
thermal strain, t
mv1
strain,
effective length, Leff
Prelim/APM Design Tool
XaiTools ChipPackage
start, x1
end, x2
cross section:
effective ring

r2
L  L  Lo
condition
r1
L  x2  x1
material
polar moment of inertia, J
L
r3 ro
outer radius,
L
linear elastic model
reaction
allowable stress
twist mos model
Margin of Safety
(> case)
allowable
Torsional Rod
stress,al1

temperature change,T
mode: shaft torsion
undeformed length, Lo
deformation model
al2a
al2b
shear modulus, G
al3
total elongation,L
length, L
Lo

1
2
Modular, Reusable
Template Libraries
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
Analyzable
Product Model
PWB DB
Analysis Modules (CBAMs)
of Diverse Behavior & Fidelity
Thermal
Resistance
Analysis Tools
XaiTools
General Math
ChipPackage
Mathematica
FEA
Ansys
3D
XaiTools
Materials DB*
Thermal
Stress
EBGA, PBGA, QFP
PKG

Basic
3D**
Chip
Cu
Ground
** = Demonstration module
© 1993-2001 GTRC
Basic
Documentation
Automation
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
Authoring
MS Excel
38
An Introduction to X-Analysis Integration (XAI)
Short Course Outline
Part 1: Constrained Objects (COBs) Primer
Part 2: Multi-Representation Architecture (MRA) Primer
(Highlights in proceedings)
– Analysis Integration Challenges
Flap Link:
– Overview of COB-based XAI
A High Diversity Example
– Ubiquitization Methodology
Example Applications
» Airframe Structural Analysis
» Circuit Board Thermomechanical Analysis
» Chip Package Thermal Analysis
– Summary
Part 3: Advanced Topics & Current Research
– Progress towards Multi-Functional Optimization
© 1993-2001 GTRC
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
39
COB-based Constraint Schematic
for Multi-Fidelity CAD-CAE Interoperability
Flap Link Benchmark Example
Design Tools
Analysis Building Blocks
(ABBs)
MCAD Tools
CATIA, I-DEAS*
Pro/E* , UG *, ...
Analysis Modules
of Diverse Behavior & Fidelity
(CBAMs)
Continuum ABBs:
y
Material Model ABB:
 

G 
E
2 (1  r5
)
e 
cte, 

T
t


area, A
T, ,  x
Extension
r3
r2
undeformed length, Lo

e
shear strain, 
 t  T
youngs modulus, E
poissons ratio, 

r4
force, F
G
F
E, A, 
E
reference temperature, To
1D Linear Elastic Model
shear stress, 
L
Lo
One D Linear
F
Elastic Model
(no shear)
edb.r1
temperature, T
L
material model
Extensional Rod
Flap Link Extensional Model
total elongation,L
r1
start, x1
shear modulus, G
linkage
effective length, Leff
Extensional Rod
(isothermal)
al1
E
temperature change, T
r4
thermal strain, t
y
material model
elastic strain, e

Torsional Rod
strain, 
r3
stress, 
One D Linear
T
Elastic Model
r2
E
torque, Tr

polar moment of inertia, J

radius, r
mode: shaft tension
Lo
material
x
area, A
cross section
T
G, r, ,  ,J
L
L
x2
al2
linear elastic model
A
youngs modulus, E al3
reaction
condition
G
E

F

stress mos model
e
T
t




Margin of Safety
(> case)
1D
allowable stress
allowable
General Math
Mathematica
Matlab*
MathCAD*
...
actual
r3
MS
undeformed length, Lo
r1
theta start, 1
theta end, 2
twist, 
Flap Link Plane Strain Model
inter_axis_length
linkage
deformation model
Parameterized
FEA Model
sleeve_1
w
sleeve_2
w
shaft
cross_section:basic
t
L
ws1
r
Legend
Tool Associativity
Object Re-use
ts1
rs2
t
2D
mode: tension
ux,max
ws2
r
ts2
x,max
rs2
wf
wf
tw
tw
tf
tf
material
E
name
E

linear_elastic_model

F
condition reaction
flap_link
effective_length
allowable stress
L
B
sleeve_1
w
sleeve_2
w
ts2
ts1
s
sleeve1
allowable inter axis length change
t
ux mos model
stress mos model
r
Margin of Safety
(> case)
Margin of Safety
(> case)
allowable
allowable
actual
actual
MS
MS
x
sleeve2
shaft
rib1
R1
t
rib2
R1
r
R2
x
ds1
ds2
B
shaft
cross_section
wf
R3
tw
R4
t1f
Leff
R6
R5
deformation model
t2f
critical_section
critical_detailed
Torsional Rod
wf
linkage
tw
Materials Libraries
In-House, ...
Parts Libraries
In-House*, ...
rib_1
Lo
t
t2f
R2
critical_simple
wf
h
t
tw
R3
E
name
stress_strain_model
mode: shaft torsion
R8
area
b
linear_elastic
hw

tf
cte
area
R9
Torsion
R10

1
R7
h
material
al1
b
t1f
rib_2
effective length, Leff
R11
hw
cross section:
effective ring
material
condition
polar moment of inertia, J
al2a
outer radius, ro
al2b
linear elastic model
reaction
allowable stress
R12
twist mos model
Margin of Safety
(> case)
Analyzable Product Model
(APM)
* = Item not yet available in toolkit (all others have working examples)
© 1993-2001 GTRC
Lo
x1
length, L
end, x2
r1
Analysis Tools
(via SMMs)
1D
allowable
al3
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
shear modulus, G
2
FEA
Ansys
Abaqus*
CATIA Elfini*
MSC Nastran*
MSC Patran*
...
Flap Link Torsional Model
40
Diversity Demonstrated in Test Cases
Test Case Analysis Templates
Target
Characteristics
Flap Link
CBAMs
PWA/B
CBAMs
Aerospace
CBAMs
Electrical Chip
Package CBAMs
Product Domain
airframe
printed circuit board (PWA/B)
airframe
chip package
CAD Tools
CATIA (MCAD)
Mentor Graphics (ECAD)
XaiTools PWA/B
CATIA (MCAD)
XaiTools
Chip Package (XCP)
Discipline
structural
thermo-mechanical
structural
thermal
deformation
(warpage)
lug & fitting
ultimate shear,
bending shear
temperature
1.5D
thermal body
(3D, linear)
Diversity Dimensions
deformation
(extension)
Behavior
deformation
(torsion)
extensional rod
(1D, linear)
plane stress body
(2D, linear)
Solution Method
(and Tools)
formula-based
(Mathematica)
FEA (Ansys,
Patran, Abaqus),
formula-based
(Mathematica)
Directionality
multi
oneway
(partially multi)
Fidelity
torsional rod
(1D, linear)
thermal bending
(1D, linear)
plane strain body
(2D, linear)
formula-based
(Mathematica)
formula-based
(Mathematica)
FEA
(Ansys, Cadas),
formula-based
(Mathematica)
formula-based
(Mathematica)
FEA (Ansys),
formula-based
(Mathematica);
custom cob-based
mesh algorithm
multi
multi
oneway
(partially multi)
oneway
(partially multi)
oneway
(partially multi)
COB Usage Characteristics
Product Design
Info Usage
detailed design
(COI via CATIA interface)
detailed design
(STEP AP210 -Part 21
via Mentor Graphics interface)
detailed design
(COI via
CATIA interface)
preliminary design
(COI via
XCP design tool)
Automation
fully automated
fully automated
fully automated
fully automated
[after Wilson, 2000]
© 1993-2001 GTRC
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
Patran and Abaqus links are work-in-progress
41
Multi-Representation Architecture (MRA)
Summary
3
Analyzable
Product Model
4 Context-Based Analysis Model
APM
2 Analysis Building Block
Printed Wiring Assembly (PWA)
1 Solution Method Model
CBAM
ABB
SMM
APM ABB
Component
Solder
Joint
Component
Solder Joint
PWB
T0
body 1
body4
ABBSMM
body3
body 2
Printed Wiring Board (PWB)
Design Tools


Solution Tools
Provides formal analysis integration methodology
Similar to “software design patterns”
for CAD-CAE domain
– Identifies patterns between CAD and CAE
(identifies major types of objects)
– Captures explicit associativity: design-to-many analyses

Distinctive CAD-CAE associativity needs
– Multi-fidelity, multi-directional capabilities
© 1993-2001 GTRC
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
42
COB-based Analysis Integration
Business Benefits

COB end user : Designer
(uses instances & applications)
– Automation  Time savings & consistency
– More analysis  Improved designs

COB creator : Analyst
(creates models with COB definition language)
– Modularity & reusability  Faster, consistent modeling
– Semantic richness  Increased understanding
– Knowledge capture  Enhanced corporate memory

COB application developer: Programmer
(uses COB API to create COB-based custom tools)
– Modularity & reusability  Faster, consistent application
development
© 1993-2001 GTRC
Georgia Tech  Engineering Information Systems Lab  eislab.gatech.edu
43