3_2001-10_NIST_Seminar_Analysis_Templates_Peak

Download Report

Transcript 3_2001-10_NIST_Seminar_Analysis_Templates_Peak

Seminar
NIST Gaithersburg, Maryland
October 9, 2001
Techniques and Tools for
Product-Specific Analysis Templates
Towards Enhanced CAD-CAE Interoperability for
Simulation-Based Design and Related Topics
Russell S. Peak
Senior Researcher
Manufacturing Research Center
Georgia Tech
Techniques and Tools for
Product-Specific Analysis Templates
Towards Enhanced CAD-CAE Interoperability for
Simulation-Based Design and Related Topics
Design engineers are becoming increasingly aware of “analysis template” pockets that exist in
their product domain. For example, tire-roadway analysis templates verify handling, durability,
and slip requirements, and thermal resistance and interconnect reliability templates are common
to electronic chip packages. Such templates may exist in the form of paper-based notes and
design standards, as well as loosely structured spreadsheets and electronic workbooks. Often,
however, they are not articulated in any persistent form.
Some CAD/E software vendors are offering pre-packaged analysis template catalogs like the
above; however, they are typically dependent on a specific toolset and do not present designanalysis idealization associativity to the user. Thus, it is difficult to adapt, extend, or transfer
analysis template knowledge. Domain- and tool-independent techniques and related standards are
needed.
This seminar overviews emerging analysis template theory and methodology that addresses such
issues. Patterns that naturally exist in between traditional CAD and CAE models are
summarized, along with their embodiment in a knowledge representation known as constrained
objects. Industrial applications from airframe structural analysis, circuit board thermomechanical
analysis, and chip package thermal resistance analysis are given.
This approach enhances knowledge capture, modularity, and reusability, as well as improves
automation (e.g., decreasing total simulation cycle time by 75%). The object patterns also
identify where best to apply technologies like STEP, XML, CORBA/SOAP, and web services.
We believe further benefits are possible if these patterns are combined with other efforts to enable
ubiquitous analysis template technology.
See the following web document for summaries and pointers to the main techniques, software
tools, and application domains in this X-analysis integration (XAI) work. Here X represents
product life cycle stages like design, manufacture, and maintenance. Other pointers include Short
Course slides and software tools.
http://eislab.gatech.edu/research/XAI_Central.doc
© 1993-2001 GTRC
Russell S. Peak received all his degrees in the School of Mechanical Engineering at Georgia Tech. His
industrial experience includes business telephone design at AT&T Bell Laboratories and analysis integration
as a Visiting Researcher at the Hitachi Mechanical Engineering Research Laboratory in Japan. Dr. Peak is
the developer of constrained objects (COBs), the multi-representation architecture (MRA) for analysis
integration, and context-based analysis models (CBAMs) - a knowledge pattern that explicitly captures
design-analysis associativity using object and constraint graph techniques. He is a member of ASME and
the U. S. Association of Computational Mechanics, and he serves on the PDES Inc. Technical Advisory
Committee.
Engineering Information Systems Lab  eislab.gatech.edu
2
Nomenclature



ABB
AMCOM
APM
CAD
CAE
CBAM
COB
COI
COS
CORBA
DAI
EIS
ESB
FEA
FTT
GUI
IIOP
MRA
ORB
OMG
PWA
PWB
SBD
SBE
SME
SMM
ProAM
PSI
STEP
VTMB
XAI
XCP
XFW
XPWAB
© 1993-2001 GTRC
ABB-SMM transformation
idealization relation between design and analysis attributes
APM-ABB associativity linkage indicating usage of one or more i
analysis building block
U. S. Army Aviation and Missile Command
analyzable product model
computer aided design
computer aided engineering
context-based analysis model
constrained object
constrained object instance
constrained object structure
common ORB architecture
design-analysis integration
engineering information systems
engineering service bureau
finite element analysis
fixed topology template
graphical user interface
Internet inter-ORB protocol
multi-representation architecture
object request broker
Object Management Group, www.omg.com
printed wiring assembly (a PWB populated with components)
printed wiring board
simulation-based design
simulation-based engineering
small-to-medium sized enterprise (small business)
solution method model
Product Data-Driven Analysis in a Missile Supply Chain (ProAM) project (AMCOM)
Product Simulation Integration project (Boeing)
Standard for the Exchange of Product Model Data (ISO 10303).
variable topology multi-body
X-analysis integration (X= design, mfg., etc.)
XaiTools ChipPackage™
XaiTools FrameWork™
XaiTools PWA-B™
Engineering Information Systems Lab  eislab.gatech.edu
3
Analysis Module Catalog:
Chip Package Simulation
thermal, hydro(moisture), fluid dynamics(molding), mechanical and electrical behaviors

PakSi-TM and PakSi-E tools
http://www.icepak.com/prod/paksi/ as of 10/2001

Chip package-specific behaviors:
thermal resistance, popcorning, die cracking, delaminating, warpage & coplanarity,
solder joint fatigue, molding, parasitic parameters extraction, and signal integrity
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
4
Analysis Module Catalog:
Excavator/Loader Structural and Vibration & Noise Analysis


Infinik (Korea)http://www.infinik.com/solution/software.htm as of 10/2001
Optimal Mount Design of Cabin
– Objective: Mininize vibration and reaction force at cabin mounting points
– Analysis Type: Modal, forced vibration,substructure technique

Structures using ANSYS
– Analysis Objects: Boom, arm, upper frame, lower frame
– Analysis Type: Static,model,fatigue,life analysis

© 1993-2001 GTRC
Noise & Vibration
Engineering Information Systems Lab  eislab.gatech.edu
5
Analysis Module Toolkit & Catalogs:
Diverse Application Libraries in EASY5
From http://www.boeing.com/assocproducts/easy5/products/prod_libraries.htm as of 9/2001
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
6
Analysis Module Catalog:
Tire-roadway interaction on full-vehicle performance
From http://www.adams.com/product/product_line/tire.pdf as of 6/20/2001
Diverse Analysis Modules
Diverse Design
Data Fidelities
Different
Behaviors
Various
Environment /
Boundary
Condition
Fidelities
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
7
Analysis Template Methodology &
X-Analysis Integration Objectives (X=Design, Mfg., etc.)




Goal:
Improve engineering processes via analysis templates
with enhanced CAx-CAE interoperability
Challenges:
– Idealizations
– Diversity: Information, Behaviors, Disciplines, Fidelity,
Feature Levels, CAD/CAE Methods & Tools, …
– Multi-Directional Associativity:
DesignAnalysis, Analysis  Analysis
Initial Focus:
Capture analysis template knowledge in modular form
for regular design usage
One Approach:
Multi-Representation Architecture (MRA)
using Constrained Objects (COBs)
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
8
Multi-Fidelity Idealizations
Design Model (MCAD)
Analysis Models (MCAE)
Behavior = Deformation
1D Beam/Stick Model
flap support assembly
inboard beam
3D Continuum/Brick Model
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
9
An Introduction to X-Analysis Integration (XAI)
Short Course Outline - Highlights
Part 1: Constrained Objects (COBs) Primer
– Nomenclature
Part 2: Multi-Representation Architecture (MRA) Primer
– Analysis Integration Challenges
– Overview of COB-based XAI
– Ubiquitization Methodology
Part 3: Example Applications
» Airframe Structural Analysis (Boeing)
» Circuit Board Thermomechanical Analysis
(DoD: ProAM; JPL/NASA)
» Chip Package Thermal Analysis (Shinko)
– Summary
Part 4: Advanced Topics & Current Research
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
10
COB Structure: Graphical Forms
Spring Primitive
a. Shape Schematic-S
c. Constraint Schematic-S
L
L
Lo
F
x1
F  k L
F
x2
k
r3
spring constant, k
deformed state
r1 : L  x2  x1
b. Relations-S r2 : L  L  L0
undeformed length, L 0
r2
L  L  Lo
start, x1
L  x2  x1
end, x2
force, F
total elongation,  L
length, L
r1
r3 : F  kL
Basic Constraint Schematic-S Notation
variable a
a
subvariable a.d
d
s
h
subsystem s
of cob type h
(for reuse by other COBs)
a b
subvariable s.b
Elementary
Spring
k
F
relation r1(a,b,s.c)
r1
b
r2
e bc
c
d. Subsystem-S
c d
e
f
e=f
equality relation
option category 1
option 1.1
[1.1] f = s.d
g
[1.2] f = g
option 1.2
w
L [ j:1,n]
© 1993-2001 GTRC
aggregate c.w
wj
element wj
Engineering Information Systems Lab  eislab.gatech.edu
L0
L
x1
L
x2
11
COB Structure: Lexical Form
Spring Primitive
Constraint Schematic-S
spring constant, k
r3
F  k L
undeformed length, L 0
r2
L  L  Lo
start, x1
L  x2  x1
end, x2
force, F
total elongation,  L
length, L
r1
Lexical COB Structure (COS)
COB spring SUBTYPE_OF abb;
undeformed_length, L<sub>0</sub> : REAL;
spring_constant, k : REAL;
start, x<sub>1</sub> : REAL;
end, x<sub>2</sub> : REAL;
length, L : REAL;
total_elongation, &Delta;L : REAL;
force, F : REAL;
RELATIONS
r1 : "<length> == <end> - <start>";
r2 : "<total_elongation> == <length> - <undeformed_length>";
r3 : "<force> == <spring_constant> * <total_elongation>";
END_COB;
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
12
Example COB Instance
Spring Primitive
Constraint Schematic-I
Lexical COB Instance (COI)
example 1, state 1.1
5 N/mm
20 mm
state 1.0 (unsolved):
r3
spring constant, k
F  kL
undeformed length, L 0
r2
L  L  Lo
start, x1
L  x2  x1
end, x2
force, F
total elongation,  L
length, L
10 N
2 mm
22 mm
r1
Basic Constraint Schematic-I Notation
100 lbs
30e6 psi
200 lbs
X
a
Input a = 100 lbs
b
Result b = 30e6 psi
(output or intermediate variable)
c
Result c = 200 lbs
(result of primary interest)
INSTANCE_OF spring;
undeformed_length : 20.0;
spring_constant : 5.0;
total_elongation : ?;
force : 10.0;
END_INSTANCE;
state 1.1 (solved):
INSTANCE_OF spring;
undeformed_length : 20.0;
spring_constant : 5.0;
start : ?;
end : ?;
length : 22.0;
total_elongation : 2.0;
force : 10.0;
END_INSTANCE;
Equality relation is suspended
X r1
Relation r1 is suspended
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
13
Traditional Mathematical Representation
Two Spring System
System Figure
k1
k2
P
u1
u2
Free Body Diagrams
L1
L2
L1
L10
F1
x11
Kinematic Relations
Constitutive Relations
© 1993-2001 GTRC
k1
x12
F1
L2
L20
F2
x21
k2
x22
F2
Variables and Relations
r11 : L1  x12  x11
bc1 : x11  0
r12 : L1  L1  L10
bc2 : x12  x21
r13 : F1  k1L1
bc3 : F1  F2
r21 : L2  x22  x21
bc4 : F2  P
r22 : L2  L2  L20
bc5 : u1  L1
r23 : F2  k 2 L2
bc6 : u2  L2  u1
Engineering Information Systems Lab  eislab.gatech.edu
Boundary Conditions
14
Constraint Graph-S
Two Spring System
k1
k2
P
u1
u2
r11 : L1  x12  x11
r12 : L1  L1  L10
r13 : F1  k1L1
F1
r21 : L2  x22  x21
bc1 : x11  0
r13
x11
bc2 : x12  x21
bc3 : F1  F2
bc4 : F2  P
bc5 : u1  L1
bc6 : u2  L2  u1
r23
L2
x22
L1
r11
k2
spring2
spring1
L1
bc4
F2
k1
r22 : L2  L2  L20
r23 : F2  k 2 L2
P
bc3
bc1
L2
r21
r12
r22
x12
x21
L10
L20
bc6
bc5
u1
u2
bc2
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
15
COB Representation
Extended Constraint Graph-S: Two Spring System
Constraint Graph-S
P
bc3
bc1
F1
F2
k1
r13
Extended Constraint Graph-S
x11
L2
r21
r12
two-spring system
spring 1
spring constant, k
total elongation,  L
deformation 1, u1
deformation 2, u2
undeformed length, L 0
length, L
force , P
start, x1
r22
x12
force, F
x21
L10
F  kL
r23
L2
x22
L1
r11
k2
spring2
spring1
L1
bc4
L20
bc6
bc5
r3
u1
L  L  Lo r2
L  x2  x1
r1
F  kL
r3
u2
bc2
end, x2
spring 2
force, F
spring constant, k
partial
(BC relations not included)
total elongation,  L
undeformed length, L 0
length, L
start, x1
L  L  Lo r2
L  x2  x1
• Groups objects & relations
into parent objects
• Object-oriented vs. flattened
r1
end, x2
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
16
COB Representation
Constraint Schematic-S: Two Spring System
Constraint Graph-S
P
bc3
bc1
F1
Constraint Schematic-S
F2
k1
r13
spring 1
x11
Ele me nta ry
S pring
k
F
L0
x11  0
bc1
x1
L
u1
r22
x12
x21
L10
L20
bc6
bc5
L
u1
x2
bc2
L2
r21
r12
bc5
r23
L2
x22
L1
r11
k2
spring2
spring1
L1
bc4
u2
bc2
bc3
spring 2
Ele me nta ry
S pring
k
bc4
F
L0
L
x1
L
u 2  L2  u1
P
u2
• Encapsulated form (hides details)
bc6
x2
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
17
COB Constraint Schematic-S
Two Spring System
k1
k2
P
u1
Analysis Primitives
with
Encapsulated Relations
spring 1
r13 : F1  k1L1
r21 : L2  x22  x21
r22 : L2  L2  L20
r23 : F2  k 2 L2
System-Level Relations
(Boundary Conditions)
Elementary
Spring
k
r11 : L1  x12  x11
r12 : L1  L1  L10
u2
x11  0
bc1
F
L0
L
x1
L
bc5
u1
bc1 : x11  0
bc2 : x12  x21
bc3 : F1  F2
x2
bc2
bc4 : F2  P
bc3
bc5 : u1  L1
spring 2
bc6 : u2  L2  u1
Elementary
Spring
k
bc4
F
L0
L
x1
L
u 2  L2  u1
P
u2
bc6
x2
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
18
COBs as Building Blocks
Two Spring System
k1
k2
P
u1
u2
Constraint Schematic-S
spring 1
Elementary
Spring
k
x11  0
bc1
Lexical COB Structure (COS)
F
L0
L
x1
L
bc5
x2
bc2
bc3
spring 2
Elementary
Spring
k
bc4
F
L0
L
x1
L
u 2  L2  u1
COB spring_system SUBTYPE_OF analysis_system;
spring1 : spring;
spring2 : spring;
deformation1, u<sub>1</sub> : REAL;
deformation2, u<sub>2</sub> : REAL;
load, P : REAL;
RELATIONS
bc1 : "<spring1.start> == 0.0";
bc2 : "<spring1.end> == <spring2.start>";
bc3 : "<spring1.force> == <spring2.force>";
bc4 : "<spring2.force> == <load>";
bc5 : "<deformation1> == <spring1.total_elongation>";
P
bc6 : "<deformation2> == <spring2.total_elongation>
+ <deformation1>";
u2
END_COB;
u1
bc6
x2
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
19
Analysis System Instance
Two Spring System
Constraint Schematic-I
Lexical COB Instance (COI)
state 1.0 (unsolved):
INSTANCE_OF spring_system;
spring1.undeformed_length
spring1.spring_constant :
spring2.undeformed_length
spring2.spring_constant :
load : 10.0;
deformation2 : ?;
END_INSTANCE;
example 2, state 1.1
spring 1
Elementary
Spring
10.0
5.5
k
8.0
L0
L
1.818
x1
L
9.818
x11  0
bc1
F
bc5
u1 1.818
x2
9.818
bc2
bc3
spring 2
Elementary
Spring
6.0
k
8.0
L0
L
9.818
x1
L
19.48
x2
© 1993-2001 GTRC
F
10.0
bc4
1.667
u 2  L2  u1
9.667 bc6
: 8.0;
5.5;
: 8.0;
6.0;
P
10.0
u2 3.485
state 1.1 (solved):
INSTANCE_OF spring_system;
spring1.undeformed_length : 8.0;
spring1.spring_constant : 5.5;
spring1.start : 0.0;
spring1.end : 9.818;
spring1.force : 10.0;
spring1.total_elongation : 1.818;
spring1.length : 9.818;
spring2.undeformed_length : 8.0;
spring2.spring_constant : 6.0;
spring2.start : 9.818;
spring2.force : 10.0;
spring2.total_elongation : 1.667;
spring2.length : 9.667;
spring2.end : 19.48;
load : 10.0;
deformation1 : 1.818;
deformation2 : 3.485;
END_INSTANCE;
Engineering Information Systems Lab  eislab.gatech.edu
20
Spring Examples Implemented
in XaiTools X-Analysis Integration Toolkit
spring: state 1.1 (solved)
spring system: similar to state 1.1 (solved):
spring: state 5.1 (solved)
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
21
Using Internet/Intranet-based Analysis Solvers
Thick Client Architecture
Users
Engineering Service Bureau
Client PCs
Host Machines
Internet/Intranet
© 1993-2001 GTRC
EIS Lab
CORBA Daemon
Iona orbixdj
- Regular internal use
U-Engineer.com
CORBA Servers
XaiToolsAnsys
Ansys
XaiTools
XaiTools
Math.
XaiTools
SolverAnsys
Server
Solver
Server
Solver
Server
Solver Server
FEA Solvers
Ansys
Math Solvers
- Demo usage:
- US
- Japan
Nov.’00-Present:
Electronics Co.
- Began production usage
(dept. Intranet)
Future:
...
XaiTools
CORBA
IIOP
Internet
Thick Client
June’99-Present:
Mathematica
Engineering Information Systems Lab  eislab.gatech.edu
Company Intranet
and/or
U-Engineer.com
(commercial)
- Other solvers
22
COB Modeling Languages & Views
Constraint Schematic-S
Structure
Level
(Template)
COB Structure
Definition Language
(COS)
Subsystem-S
I/O Table-S
Object Relationship Diagram-S
Constraint Graph-S
Express-G
Instance
Level
STEP
Express
Constraint Schematic-I
100 lbs
COB Instance
Definition Language
(COI)
20.2 in
R101
30e6 psi
200 lbs
Constraint Graph-I
R101
20.2 in
STEP
Part 21
100 lbs
30e6 psi
© 1993-2001 GTRC
200 lbs
Engineering Information Systems Lab  eislab.gatech.edu
23
COB Object Model View (EXPRESS-G)
Spring Schema
k1
Real
undeformed
_length
k2
P
u1
Real
u2
force
Real
load
spring_2
Real
total
_elongation
Real
Real
deformation1
spring_1
spring
length
spring
_system
Real
deformation2
Real
end0
Real
start
L
L
Lo
Real
spring
_constant
F
x1
k
x2
F
deformed state
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
24
Constrained Objects (COBs)
Representation Characteristics & Advantages

Overall characteristics
– Declarative knowledge representation (non-causal)
– Combining object & constraint graph techniques
– COBs
=
(STEP EXPRESS subset)
+
(constraint graph concepts & views)

Advantages over traditional analysis representations
– Greater solution control
– Richer semantics
(e.g., equations wrapped in engineering context)
– Unified views of diverse capabilities (tool-independent)
– Capture of reusable knowledge
– Enhanced development of complex analysis models

Example Toolkit: XaiTools v0.5
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
25
An Introduction to X-Analysis Integration (XAI)
Short Course Outline
Part 1: Constrained Objects (COBs) Primer
– Nomenclature
Part 2: Multi-Representation Architecture (MRA) Primer
– Analysis Integration Challenges
– Overview of COB-based XAI
– Ubiquitization Methodology
Part 3: Example Applications
» Airframe Structural Analysis (Boeing)
» Circuit Board Thermomechanical Analysis
(DoD: ProAM; JPL/NASA)
» Chip Package Thermal Analysis (Shinko)
– Summary
Part 4: Advanced Topics & Current Research
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
26
X-Analysis Integration Techniques
for CAD-CAE Interoperability
http://eislab.gatech.edu/tools/XaiTools/
a. Multi-Representation Architecture (MRA)
3
Analyzable
Product Model
Design Model
4 Context-Based Analysis Model
2 Analysis Building Block
1 Solution Method Model
CBAM
ABB
Solder
Joint
material
body 1
body4
Solder Joint
Solder Joint Plane Strain Model
4 CBAM
C
L

h1
base: Alumina
Epoxy
ABBSMM
PWB
body3
APM ABB
core: FR4
Plane Strain Bodies System
2 ABB

 total height, h c
Component
Solder
Joint
T0
Component
 linear-elastic model
 primary structural
SMM
APM ABB
Analysis Model
PWA Component Occurrence
3 APM
APM
Printed Wiring Assembly (PWA)
Component
b. Explicit Design-Analysis Associativity
body 1
body 4
body
body 2
body 2
PWB
Printed Wiring Board (PWB)
Design Tools
4 CBAM
Analysis Module Catalogs
Analysis Procedures

3 APM
sj
solder joint
shear strain
range

Lc
total height
hc
primary structural material
T0
linear-elastic model
length 2 +
total thickness
Product
Model
1.25
[1.1]
Physical Behavior Research,
Know-How, Design Handbooks, ...
Commercial
Design Tools
Plane Strain
Bodies System
(Module Creation)
component
pwb
(Module Usage)
Selected Module
Commercial
Analysis Tools
primary structural material
solder
Tc
Ls
[1.2]
hs
linear-elastic model
rectangle
solder joint
[1.1]
detailed shape
[1.2]
linear-elastic model
[2.1]
Ts
average
Solder Joint Deformation Model
bilinear-elastoplastic model
Ansys
[2.2]
MCAD
ECAD
Idealization/
Defeaturization
Component
CAE
Solder Joint
© 1993-2001 GTRC
a
L1
h1
stress-strain
model 1
T1
L2
h2
stress-strain
model 2
T2
geometry model 3
stress-strain
model 3
T3
 xy, extreme, 3
T sj
 xy, extreme, sj
Constrained Object-based Analysis Module
PWB
APM  CBAM  ABB SMM
1 SMM
deformation model
Fine-Grained Associativity
approximate maximum
inter-solder joint distance
component
occurrence
c
ABB SMM
2 ABB
Ubiquitization
Ubiquitous Analysis
3
plane strain bodyi , i = 1...4
geometryi
materiali (E,  ,  )
Informal Associativity Diagram
Solution Tools
c. Analysis Module Creation Methodology
To
Constraint Schematic View
Abaqus
Engineering Information Systems Lab  eislab.gatech.edu
27
Multi-Representation Architecture for
Design-Analysis Integration
3
Analyzable
Product Model
4 Context-Based Analysis Model
APM
2 Analysis Building Block
Printed Wiring Assembly (PWA)
1 Solution Method Model
CBAM
ABB
SMM
APM ABB
Component
Solder
Joint
Component
Solder Joint
PWB
T0
body 1
body4
ABBSMM
body3
body 2
Printed Wiring Board (PWB)
Design Tools
© 1993-2001 GTRC
Solution Tools
Engineering Information Systems Lab  eislab.gatech.edu
28
Analysis Building Blocks (ABBs)
Object representation of product-independent
analytical engineering concepts
Analysis Primitives
Analysis Systems
- Primitive building blocks
Material Models
s
s
e
LinearElastic
Continua
e
e
Bilinear
Plastic
N
Low Cycle
Fatigue
Discrete Elements
q(x)
Distributed Load
Plate
Interconnections
body 2
body 1
Rigid
Support
x
Beam
Cantilever Beam System
No-Slip
Analysis Variables
q(x)
Temperature,T
General
- User-defined systems
Stress, s
Damper
Distributed Load
© 1993-2001 GTRC
- Predefined templates
y
Plane Strain Body
Rigid
Support
Spring
Specialized
Beam
Geometry
Mass
- Containers of ABB "assemblies"
Strain, e
Engineering Information Systems Lab  eislab.gatech.edu
29
COB-based Libraries of
Analysis Building Blocks (ABBs)
Continuum ABBs
Extensional Rod
Material Model ABB
reference temperature, To
force, F
1D Linear Elastic Model
shear stress,

poissons ratio, 
r1
cte, 
temperature change,T
e t  T
r4
thermal strain, et
elastic strain, ee
s
r3
stress,s
ee 
start, x1
shear modulus, G
E
G
2(1  )
s
E
r4
F
s
A
undeformed length, Lo
G
youngs modulus, E
e
area, A
T  T  To
e  ee  et
modular
re-usage
end, x2
r1
T, e, s x

ee
T
et
s
e
r3
L
e
L
r2
L  L  Lo
total elongation,L
length, L
y
Lo
r2
E
T
T
G, r, ,  ,J
x
G


radius, r
Trr
J
undeformed length, Lo
theta end, 2
F
E, A, 
E
One D Linear
Elastic Model
strain, e
theta start, 1
L
F
material model
Torsional Rod
polar moment of inertia, J
L
Lo
L  x2  x1
torque, Tr
© 1993-2001 GTRC
One D Linear
Elastic Model
(no shear)
shear strain, 
r5
 
edb.r1
temperature, T
y
material model

ee
T
et
s
e


 
r1
   2  1
Engineering Information Systems Lab  eislab.gatech.edu
r3
r
L0
twist, 
30
Multi-Representation Architecture for
Design-Analysis Integration
3
Analyzable
Product Model
4 Context-Based Analysis Model
APM
2 Analysis Building Block
Printed Wiring Assembly (PWA)
1 Solution Method Model
CBAM
ABB
SMM
APM ABB
Component
Solder
Joint
Component
Solder Joint
PWB
T0
body 1
body4
ABBSMM
body3
body 2
Printed Wiring Board (PWB)
Design Tools
© 1993-2001 GTRC
Solution Tools
Engineering Information Systems Lab  eislab.gatech.edu
31
Analyzable Product Models
(APMs)
Provide advanced access to design data needed by diverse analyses.
Design Applications
Solid
Modeler
Combine
information
Add reusable
multifidelity
idealizations
Analysis Applications
FEA-Based
Analysis
...
Materials
Database
Fasteners
Database
© 1993-2001 GTRC
Analyzable Product Model
(APM)
Support multidirectionality
Engineering Information Systems Lab  eislab.gatech.edu
FormulaBased
Analysis
32
Flap Link Geometric Model
(with idealizations)
L
B
ts2
ts1
s
sleeve1
sleeve2
shaft
rib1
rib2
ds1
ds2
B
red = idealized parameter
Leff
A, I, J
f
f
tft
tft
htotal
tfb
tf
tw
wf
hw
rf
Section B-B
(at critical_cross_section)
Detailed Design
© 1993-2001 GTRC
A, I, J
A, I, J
htotal
tfb
hw
tw
htotal
tf
wf
tw
hw
wf
tapered I
Multifidelity Idealizations
Engineering Information Systems Lab  eislab.gatech.edu
basic I
28b
33
Flap Linkage Example
Manufacturable Product Model (MPM) = Design Description
flap_link
Extended Constraint Graph
L
w
sleeve_1
A
ts
ts1
2
t
Sleeve 1
r
Sleeve 2
Shaft
ds1
x
A
ds2
w
sleeve_2
R1
t
r
x
Product Attribute
shaft
Ri
cross_section
Product Relation
tw
t1f
t2f
rib_1
b
h
t
rib_2
R2
b
h
t
material
© 1993-2001 GTRC
R3
COB Structure (COS)
wf
COB flap_link SUBTYPE_OF part;
part_number
: STRING;
inter_axis_length, L
: REAL;
sleeve1
: sleeve;
sleeve2
: sleeve;
shaft
: tapered_beam;
rib1
: rib;
rib2
: rib;
RELATIONS
PRODUCT_RELATIONS
pr2 : "<inter_axis_length> == <sleeve2.origin.y> <sleeve1.origin.y>";
pr3 : "<rib1.height> == (<sleeve1.width> <shaft.cross_section.design.web_thickness>)/2";
pr4 : "<rib2.height> == (<sleeve2.width> <shaft.cross_section.design.web_thickness>)/2";
...
END_COB;
name
Engineering Information Systems Lab  eislab.gatech.edu
34
Flap Linkage Example
Analyzable Product Model (APM) = MPM Subset + Idealizations
flap_link
Extended Constraint Graph
effective_length
L
A
ts
ts1
w
sleeve_1
t
2
s
Sleeve 1
Sleeve 2
Shaft
ds1
r
ds2
A
x
Leff
w
sleeve_2
R1
t
R1
r
R2
x
Product Attribute
shaft
Ri
cross_section
Product Relation
wf
R3
tw
R4
t1f
Idealized Attribute
Ri
effective_length, Leff ==
inter_axis_length (sleeve1.hole.cross_section.radius +
sleeve2.hole.cross_section.radius)
Partial COB Structure (COS)
R6
R5
t2f
critical_section
critical_detailed
Idealization Relation
wf
tw
rib_1
R11
hw
b
R7
t1f
h
t
rib_2
t2f
R2
b
critical_simple
wf
h
t
material
tw
R3
name
stress_strain_model
© 1993-2001 GTRC
R8
area
linear_elastic
E
hw

tf
cte
area
Engineering Information Systems Lab  eislab.gatech.edu
R9
R10
R12
35
Flap Link APM
Implementation in CATIA v5
Design-Idealization
Relation
Design Model
flap_link
Extended Constraint Graph
effective_length
w
sleeve_1
t
r
x
w
sleeve_2
R1
t
R1
r
R2
x
Product Attribute
shaft
Ri
cross_section
Product Relation
wf
R3
tw
R4
t1f
Idealized Attribute
Ri
Idealized Model
R6
R5
t2f
critical_section
critical_detailed
Idealization Relation
wf
tw
rib_1
R11
hw
b
R7
t1f
h
t
rib_2
t2f
R2
critical_simple
wf
h
t
material
© 1993-2001 GTRC
R8
area
b
tw
R3
E
name
stress_strain_model
linear_elastic
hw

tf
cte
area
R9
R10
R12
Engineering Information Systems Lab  eislab.gatech.edu
36
Multi-Representation Architecture for
Design-Analysis Integration
3
Analyzable
Product Model
4 Context-Based Analysis Model
APM
2 Analysis Building Block
Printed Wiring Assembly (PWA)
1 Solution Method Model
CBAM
ABB
SMM
APM ABB
Component
Solder
Joint
Component
Solder Joint
PWB
T0
body 1
body4
ABBSMM
body3
body 2
Printed Wiring Board (PWB)
Design Tools
© 1993-2001 GTRC
Solution Tools
Engineering Information Systems Lab  eislab.gatech.edu
37
COB-based Constraint Schematic
for Multi-Fidelity CAD-CAE Interoperability
Flap Link Benchmark Example
Design Tools
Analysis Building Blocks
(ABBs)
MCAD Tools
CATIA, I-DEAS*
Pro/E* , UG *, ...
Analysis Modules
of Diverse Behavior & Fidelity
(CBAMs)
Continuum ABBs:
y
Extensional Rod
Material Model ABB:
shear stress,

cte, 
e t  T
s
E
2(1  )
ee
T
et
s
e
r4
area, A
F
T, e, s x
Extension
r3
r2
undeformed length, Lo
G

shear strain, 
r5

L
E, A, 
E
force, F
G
youngs modulus, E
poissons ratio, 
One D Linear F
Elastic Model
(no shear)
reference temperature, To
1D Linear Elastic Model
L
Lo
material model
edb.r1
temperature, T
total elongation,L
r1
start, x1
shear modulus, G
linkage
y
temperature change,T
e
r4
thermal strain, et
s
ee 
stress,s E
Torsional Rod
T
One D Linear
Elastic Model
strain, e
r3
effective length, Leff
mode: shaft tension
Lo
material model
elastic strain, ee
Flap Link Extensional Model
Extensional Rod
(isothermal)
al1
length, L
end, x2
r1
r2
E
material
T
G, r, ,  ,J
x
area, A
cross section
L
A
youngs modulus, E al3
reaction
condition
L
x2
al2
linear elastic model
Lo
x1
E
s
F
e
G
stress mos model
torque, Tr

polar moment of inertia, J

ee
radius, r
T
et
s
e


Analysis Tools
(via SMMs)
Margin of Safety
(> case)
1D
allowable stress
allowable
General Math
Mathematica
Matlab*
MathCAD*
...
actual
MS
r3
undeformed length, Lo
r1
theta start, 1
theta end, 2
twist, 
inter_axis_length
linkage
Flap Link Plane Strain Model
sleeve_1
w
sleeve_2
w
deformation model
Parameterized
FEA Model
t
L
ws1
r
Legend
Tool Associativity
Object Re-use
ts1
rs2
t
2D
mode: tension
ux,max
ws2
r
ts2
sx,max
rs2
shaft
cross_section:basic
wf
wf
tw
tw
tf
tf
material
E
name
E

linear_elastic_model

F
condition reaction
flap_link
allowable stress
effective_length
allowable inter axis length change
L
w
sleeve_1
B
ts2
ts1
t
r
s
w
sleeve_2
sleeve1
sleeve2
shaft
rib1
stress mos model
Margin of Safety
(> case)
allowable
allowable
actual
actual
MS
MS
R1
t
rib2
R1
r
ds1
R2
x
ds2
B
ux mos model
Margin of Safety
(> case)
x
shaft
cross_section
Leff
wf
R3
tw
R4
t1f
R6
R5
deformation model
t2f
Torsional Rod
critical_section
critical_detailed
wf
linkage
effective length, Leff
al1
Lo
tw
Materials Libraries
In-House, ...
Parts Libraries
In-House*, ...
rib_1
R7
t1f
h
t
rib_2
t2f
R2
critical_simple
wf
h
t
material
R8
tw
R3
E
name
stress_strain_model
linear_elastic
hw

tf
cte
area
R9
R10
cross section:
effective ring
material
condition
polar moment of inertia, J
al2a
outer radius, ro
al2b
linear elastic model
reaction
allowable stress
R12
Analyzable Product Model
(APM)
* = Item not yet available in toolkit (all others have working examples)
© 1993-2001 GTRC
mode: shaft torsion
Torsion
area
b

1
R11
hw
b
twist mos model
1D
Margin of Safety
(> case)
allowable
al3
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
Engineering Information Systems Lab  eislab.gatech.edu
shear modulus, G
2
FEA
Ansys
Abaqus*
CATIA Elfini*
MSC Nastran*
MSC Patran*
...
Flap Link Torsional Model
38
Tutorial Example:
Flap Link Analysis Template (CBAM)
(1a) Analysis Template: Flap Link Extensional Model
CBAM
Flap Link Analysis Documentation
(2) Torsion Analysis
(1) Extension Analysis
a. 1D Extensional Rod
1. Behavior: Shaft Tension
L
A
ts2
ts1
s
Sleeve 1
Shaft
ds1
2. Conditions:
10000
lbs
linkage
3. Part Features: (idealized)
in
effective length, Leff
APM
1020 HR Steel
Geometry
mode: shaft tension
cross section
material
A = 1.125 in2 E=
30e6
sallowable  18000
4. Analysis Calculations:
sF
L  Leff
A
s
E
5. Conclusion:
MS 
E, A
s allowable
 1  1.025
s
b. 2D Plane Stress FEA
...
psi
psi
condition
area, A
al1
P
e, s
x
Extensional Rod
(isothermal)
L
Lo
x1
al2
youngs modulus, E al3
reaction
L
deformation model
Material Models
linear elastic model
L
Leff
P
Leff
Flaps down : F =
5.0
y
(idealization usage)
ds2
A
Leff =
Sleeve 2
CAD-CAE
Associativity
ABB
L
x2
A
E
s
F
e
SMM
stress mos model
Margin of Safety
(> case)
allowable
ABB
allowable stress
actual
MS
Boundary Condition Objects
Pullable
Views*
(links to other analyses)*
Solution Tool
Interaction
* Boundary condition objects & pullable views are WIP concepts*
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
39
Flap Linkage Extensional Model (CBAM)
Example COB Instance
Flap Link Analysis Documentation
Constraint Schematic Instance
(2) Torsion Analysis
deformation model
(1) Extension Analysis
a. 1D Extensional Rod
1. Behavior: Shaft Tension
linkage Flap Link #3
effective length,
Leff
5.0 in
2. Conditions:
mode: shaft tension
Flaps down : F =
10000
critical_cross
_section
shaft
lbs
material
condition
3. Part Features: (idealized)
reaction
5.0
in
1020 HR Steel
A = 1.125 in2 E=
30e6
sallowable  18000
4. Analysis Calculations:
sF
L  Leff
A
psi
psi
2
1.125 in
area, A
al2
linear elastic model youngs modulus,E al3
steel
30e6 psi
10000 lbs
Leff =
basic
Extensional Rod
(isothermal)
al1
Lo
L
x1
L
1.43e-3 in
x2
A
8888 psi
E
s
F
e
description
flaps mid position
stress mos model
Margin of Safety
18000 psi
(> case)
allowable stress
allowable
actual
s
MS
1.025
example 1, state 1
E
5. Conclusion:
MS 
s allowable
 1  1.025
s
b. 2D Plane Stress FEA
...
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
40
Flap Link Extensional Model (CBAM)
Example COB Instance in XaiTools
example 1, state 1
Library data for
materials
Detailed CAD data
from CATIA
Idealized analysis features
in APM
Modular generic analysis templates
(ABBs)
Explicit multi-directional associativity
between design & analysis
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
41
COB-based Constraint Schematic
for Multi-Fidelity CAD-CAE Interoperability
Flap Link Benchmark Example
Design Tools
Analysis Building Blocks
(ABBs)
MCAD Tools
CATIA, I-DEAS*
Pro/E* , UG *, ...
Analysis Modules
of Diverse Behavior & Fidelity
(CBAMs)
Continuum ABBs:
y
Extensional Rod
Material Model ABB:
shear stress,

cte, 
e t  T
s
E
2(1  )
ee
T
et
s
e
r4
area, A
F
T, e, s x
Extension
r3
r2
undeformed length, Lo
G

shear strain, 
r5

L
E, A, 
E
force, F
G
youngs modulus, E
poissons ratio, 
One D Linear F
Elastic Model
(no shear)
reference temperature, To
1D Linear Elastic Model
L
Lo
material model
edb.r1
temperature, T
total elongation,L
r1
start, x1
shear modulus, G
linkage
y
temperature change,T
e
r4
thermal strain, et
s
ee 
stress,s E
Torsional Rod
T
One D Linear
Elastic Model
strain, e
r3
effective length, Leff
mode: shaft tension
Lo
material model
elastic strain, ee
Flap Link Extensional Model
Extensional Rod
(isothermal)
al1
length, L
end, x2
r1
r2
E
material
T
G, r, ,  ,J
x
area, A
cross section
L
A
youngs modulus, E al3
reaction
condition
L
x2
al2
linear elastic model
Lo
x1
E
s
F
e
G
stress mos model
torque, Tr

polar moment of inertia, J

ee
radius, r
T
et
s
e


Analysis Tools
(via SMMs)
Margin of Safety
(> case)
1D
allowable stress
allowable
General Math
Mathematica
Matlab*
MathCAD*
...
actual
MS
r3
undeformed length, Lo
r1
theta start, 1
theta end, 2
twist, 
inter_axis_length
linkage
Flap Link Plane Strain Model
sleeve_1
w
sleeve_2
w
deformation model
Parameterized
FEA Model
t
L
ws1
r
Legend
Tool Associativity
Object Re-use
ts1
rs2
t
2D
mode: tension
ux,max
ws2
r
ts2
sx,max
rs2
shaft
cross_section:basic
wf
wf
tw
tw
tf
tf
material
E
name
E

linear_elastic_model

F
condition reaction
flap_link
allowable stress
effective_length
allowable inter axis length change
L
w
sleeve_1
B
ts2
ts1
t
r
s
w
sleeve_2
sleeve1
sleeve2
shaft
rib1
stress mos model
Margin of Safety
(> case)
allowable
allowable
actual
actual
MS
MS
R1
t
rib2
R1
r
ds1
R2
x
ds2
B
ux mos model
Margin of Safety
(> case)
x
shaft
cross_section
Leff
wf
R3
tw
R4
t1f
R6
R5
deformation model
t2f
Torsional Rod
critical_section
critical_detailed
wf
linkage
effective length, Leff
al1
Lo
tw
Materials Libraries
In-House, ...
Parts Libraries
In-House*, ...
rib_1
R7
t1f
h
t
rib_2
t2f
R2
critical_simple
wf
h
t
material
R8
tw
R3
E
name
stress_strain_model
linear_elastic
hw

tf
cte
area
R9
R10
cross section:
effective ring
material
condition
polar moment of inertia, J
al2a
outer radius, ro
al2b
linear elastic model
reaction
allowable stress
R12
Analyzable Product Model
(APM)
* = Item not yet available in toolkit (all others have working examples)
© 1993-2001 GTRC
mode: shaft torsion
Torsion
area
b

1
R11
hw
b
twist mos model
1D
Margin of Safety
(> case)
allowable
al3
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
Engineering Information Systems Lab  eislab.gatech.edu
shear modulus, G
2
FEA
Ansys
Abaqus*
CATIA Elfini*
MSC Nastran*
MSC Patran*
...
Flap Link Torsional Model
42
Flap Linkage Plane Stress Model
(with FEA-based ABB system)
Plane Stress Bodies
y
Higher fidelity version
vs. Linkage Extensional Model
ts2
tf
wf
ts1
ws1
tw
rs1
ws2
F
rs2
C
L x
L
inter_axis_length
linkage
sleeve_1
deformation model
Parameterized
FEA Model
L
w
t
sleeve_2
mode: tension
r
ws1
w
ts1
t
rs2
r
ws2
ts2
ABBSMM
SMM Template
ux,max
sx,max
rs2
shaft
cross_section:basic
wf
tw
tf
wf
tw
tf
material
E
name

linear_elastic_model
condition reaction
allowable stress
E

F
allowable inter axis length change
ux mos model
stress mos model
Margin of Safety
(> case)
Margin of Safety
(> case)
allowable
allowable
actual
actual
MS
MS
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
43
Flap Linkage Torsional Model
Diverse Mode (Behavior) vs. Linkage Extensional Model
L
A
ts2
ts1
s
Sleeve 1
Sleeve 2
Shaft
ds1
ds2
A
deformation model
Leff
Torsional Rod
linkage
effective length, Leff
al1
Lo

1
mode: shaft torsion
cross section:
effective ring
material
condition
polar moment of inertia, J
al2a
outer radius, ro
al2b
linear elastic model
reaction
allowable stress
twist mos model
Margin of Safety
(> case)
allowable
al3
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
© 1993-2001 GTRC
shear modulus, G
2
Engineering Information Systems Lab  eislab.gatech.edu
44
An Introduction to X-Analysis Integration (XAI)
Short Course Outline
Part 1: Constrained Objects (COBs) Primer
– Nomenclature
Part 2: Multi-Representation Architecture (MRA) Primer
– Analysis Integration Challenges
– Overview of COB-based XAI
– Ubiquitization Methodology
Part 3: Example Applications
» Airframe Structural Analysis (Boeing)
» Circuit Board Thermomechanical Analysis
(DoD: ProAM; JPL/NASA)
» Chip Package Thermal Analysis (Shinko)
– Summary
Part 4: Advanced Topics & Current Research
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
45
Airframe Structural Analysis
GIT Work in Boeing PSI Project
Current Situation: Limited Analysis Integration
Design Objects
flap support assembly inboard beam (a.k.a. “bike frame”)
Manually-Maintained
Associativity
Analysis
Documentation
bulkhead assembly attach point
diagonal brace
attach point
Error-Prone, Labor-Intensive,
Little Knowledge Capture
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
46
Flexible High Diversity Design-Analysis Integration
Phase 1 Airframe Examples:
“Bike Frame” / Flap Support Inboard Beam
Design Tools
strength model
product structure
(channel fitting joint) bolt BLE7K18
head
end pad
fitting
hole
radius, r1
0.4375 in
radius, ro
0.5240 in
2.440 in
width, b
mode: (ultimate static strength)
1.267 in
eccentricity, e
0.5 in
thickness, te
2.088 in
height, h
base
0.0000 in
radius, r2
thickness, tb
0.307 in
thickness, tw
0.310 in
1.770 in
angled height, a
material
r1
r0
b
e
te
Channel Fitting
Static Strength Analysis
IAS Function
Ref D6-81766
h
hole
wall
MCAD Tools
CATIA
Modular, Reusable
Template Libraries
rear spar fitting attach point
analysis context
max allowable ultimate stress, Ftu
67000 psi
r2
tb
tw
a
Ftu
65000 psi
diagonal brace lug joint
analysis context
product structure (lug joint)
allowable ultimate long transverse stress, FtuLT
FtuLT
57000 psi diameters
lugs max allowable yield stress, Fty
LF[tyk] k = norm
L [ j:1,n ] max allowable
52000 psi
F diameter
j = top long transverse stress,
normaltyLT
, Dnorm FtyLT Dk
hole
lugj shear
39000 psi
max allowable
stress, Fsu oversize diameter,
Dover Fsu
0.7500 in
0.067 in/in
plastic ultimate strain, epu
epu
2
0.35 in
thickness,
size,n ultimate strain long transverse,
epuLT t 0.030 in/in
plastic
epuLT
young modulus of elasticity, E
2G7T12U (Detent 0, Fairing Condition 1)
condition:
mode (ultimate static strength)
load, Pu
Pu
material
max allowable ultimate stress,
jm FtuL
r1
Plug
Program
Plug joint
L29 -300
Part
Outboard TE Flap, Support
No 2;
n
8.633
K 123L4567
Inboard
Beam,
objective
deformation model
Lug Axial Ultimate
Strength Model
D
MSwall
9.17
BDM 6630
MSepb
t
MSeps
e
W
5960
effective width,
W Ibs
1.6000 in
5.11
9.77
Kaxu
0.7433
Paxu
14.686 K
7050-T7452, MS 7-214
heuristic: overall fitting factor, Jm 1
Max. torque brake setting
detent 30, 2=3.5º
condition
10000000
psi
edge margin,
e
0.7500 E
in
Analysis Modules (CBAMs)
of Diverse Feature:Mode, & Fidelity
Plug joint
F tuax
Channel Fitting67 Ksi
Template
4.317 K
Static Strength Analysis
Dataset
XaiTools
1 of 1
Bulkhead Fitting Joint
Feature
Margin
of Safety
(> case)
actual
estimated axial ultimate strength
allowable
MS
2.40
Program
L29 -300
Part
Outboard TE Flap, Support No 2;
Inboard Beam, 123L4567
Feature
Diagonal Brace Lug Joint
Template Lug Joint
Axial Ultimate Strength Model
Dataset
j = top lug
k = normal diameter
(1 of 4)
1.5D
Image API
(CATGEO)
Analyzable
Product Model
XaiTools
Lug:
Axial/Oblique;
Ultimate/Shear
Assembly:
Ultimate/
FailSafe/Fatigue*
FASTDB-like
In-House
Codes
Fitting:
Bending/Shear
3D
Fasteners DB
General Math
Mathematica
1.5D
Materials DB
MATDB-like
Analysis Tools
FEA
Elfini*
* = Item not yet available in toolkit (all others have working examples)
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
47
Today’s Fitting Catalog Documentation
from DM 6-81766 Design Manual
Calculation Steps
Categories of Idealized Fittings
Channel Fitting
End Pad Bending Analysis
Channel
Fitting
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
Angle
Fitting
Bathtub
Fitting
48
Object-Oriented Hierarchy
of Fitting ABBs
ABB
* = Working Examples
Specialized Analysis
Body
Fitting Casing Body
Fitting Washer Body
Specialized Analysis
System
Fitting Bolt Body*
bolt
washer
Fitting System ABB
casing
load
Channel Fitting Casing Body*
Open Wall Fitting
Casing Body
Bathtub Fitting
Casing Body
K1  f (r1, R, r0, e)
© 1993-2001 GTRC
Fitting Wall ABB
K2  f (te ,tw)
Angle Fitting
Casing Body
tw  min(twa, twb ) R  a  b
K3  f (r1,b, h)
Fitting End Pad ABB
Fitting End Pad
Bending ABB
Open Wall Fitting
End Pad Bending ABB
p
e  R
f d
2
C1  K1K2
Engineering Information Systems Lab  eislab.gatech.edu
fbe 
P
C1
P
2
hte
Fitting End Pad
Shear ABB*
fse 
P
2pr0te
Channel Fitting
End Pad Bending ABB*
C 1  K 3 ( 2e  t b )
49
Channel Fitting System ABBs
End Pad Bending Analysis
1
0.8
DM 6-81766 Figure 3.3
3
0.6
2.5
0.4
0.1
r1
bolt.hole.radius, r1
1.5
0.3
r1
h
end_pad.height, h
2
0.2
0.4
1
K3
channel fitting factor,
b
h
end_pad.width, b
r3
r2
end_pad.eccentricity, e
f be  K 3 ( 2e  tb )
base.thickness, tb
end_pad.thickness, te
P
ht
f
actual bending stress, be
2
e
load, P
End Pad Shear Analysis
r1
bolt.head.radius, r0
end_pad.thickness, te
load, P
© 1993-2001 GTRC
f se 
P
f
actual shear stress, se
2pr0te
Engineering Information Systems Lab  eislab.gatech.edu
50
Bike Frame Bulkhead Fitting Analysis
COB-based Analysis Template (CBAM) - Constraint Schematic
bulkhead fitting attach point
analysis context
product structure
(channel fitting joint) bolt LE7K18
end pad
fitting
strength model
head
hole
mode: (ultimate static strength)
radius, r1
0.4375 in
radius, ro
0.5240 in
width, b
2.440 in
eccentricity, e
1.267 in
0.5 in
thickness, te
2.088 in
height, h
base
wall
material
condition:
© 1993-2001 GTRC
0.0000 in
radius, r2
thickness, tb
0.307 in
thickness, tw
0.310 in
angled height, a
1.770 in
e
te
IAS Function
Ref DM 6-81766
r2
tb
tw
a
max allowable ultimate stress, Ftu
67000 psi
allowable ultimate long transverse stress, FtuLT
65000 psi
max allowable yield stress, Fty
57000 psi
Fty
max allowable long transverse stress, FtyLT
52000 psi
max allowable shear stress, Fsu
FtyLT
39000 psi
plastic ultimate strain, epu
0.067 in/in
plastic ultimate strain long transverse, epuLT
0.030 in/in
load, Pu
heuristic: overall fitting factor, Jm
r0
b
Channel Fitting
Static Strength Analysis
h
hole
young modulus of elasticity, E
2G7T12U (Detent 0, Fairing Condition 1)
r1
10000000 psi
5960 Ibs
1
Ftu
FtuLT
MSwall
9.17
MSepb
5.11
MSeps
9.77
Fsu
epu
epuLT
E
Pu
jm
Program
L29 -300
Part
Outboard TE Flap, Support No 2;
Inboard Beam, 123L4567
Feature
Dataset
1 of 1
BulkheadEngineering
Fitting Joint Information Systems Lab  eislab.gatech.edu
Template Channel Fitting
Static Strength Analysis
51
Bike Frame Bulkhead Fitting Analysis
COB-based Analysis Template (CBAM) - in XaiTools
Detailed CAD data
from CATIA
Library data for
materials & fasteners
Idealized analysis features
in APM
Modular generic analysis templates
(ABBs)
Explicit multi-directional associativity
between detailed CAD data
& idealized analysis features
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
52
An Introduction to X-Analysis Integration (XAI)
Short Course Outline
Part 1: Constrained Objects (COBs) Primer
– Nomenclature
Part 2: Multi-Representation Architecture (MRA) Primer
– Analysis Integration Challenges
– Overview of COB-based XAI
Part 3: Example Applications
» Airframe Structural Analysis (Boeing)
» Circuit Board Thermomechanical Analysis
(DoD: ProAM; JPL/NASA)
» Chip Package Thermal Analysis (Shinko)
– Summary
Part 4: Advanced Topics & Current Research
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
53
ProAM Focus
Highly Automated Internet-based Analysis Modules
World Wide
End User
AMCOM
Feedback,
Products
ProAM Focus
Life Cycle
Needs
Response to RFP,
Prime 1
Technical Feedback,
Products
RFP with Product Data (STEP, IPC, …)
© 1993-2001 GTRC
Friona
PWB Fabricator
SME 2
Atlanta
Physical Simulation
U-Engineer.com
Missile Mfg.
Rockhill
PWB Fabricator
SME 1
Internet-based
Engineering Service
Bureau
…
Engineering Information Systems Lab  eislab.gatech.edu
Idealized
Product
Data
Self-Serve
Results
Tempe
PWB Fabricator
SME n
54
ProAM Design-Analysis Integration
Electronic Packaging Examples: PWA/B
Design Tools
y
mv6
L
reference temperature, To
E
T  T  To
L
A
ts1
ts2

s
Sleeve 1
Shaft
Sleeve 2
smv1
ds1
force, F
area, A
A
r4
F
A
Leff
linkage
s
mv4
F
E, A, 
T, e, s x
One D Linear
Elastic Model
(no shear)
mv5
sr1
temperature, T
ECAD Tools
Mentor Graphics,
Accel*
L
Lo
F
material model
youngs modulus, E
cte, 
ds2
ee
T
et
s
e
elastic strain, ee
mv2
thermal strain, et
mv3
strain,e
mv1
effective length, Leff
undeformed length, Lo
start, x1
end, x2
condition
r1
cross section:
effective ring
r2
L  material
L  Lo
reaction
L  x2  x1
allowable
al2a
L
r3 ro
outer radius,
al2b
L
shear modulus, G al3
total elongation,L
linear elastic model
length, L
allowable stress
twist mos model
Margin of Safety
(> case)
polar moment of inertia, J
e
deformation model
Torsional Rod
stress,al1
s
temperature change,T
mode: shaft torsion
Lo

Modular, Reusable
Template Libraries
1
2
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
STEP AP210‡
GenCAM**,
PDIF*
PWB Stackup Tool
XaiTools PWA-B
Analysis Modules (CBAMs)
of Diverse Mode & Fidelity
Analyzable
Product Model
XaiTools
PWA-B
Solder Joint 1D,
Deformation* 2D,
3D
XaiTools Analysis Tools
PWA-B
General Math
Mathematica
FEA Ansys
PWB
Warpage
1D,
2D
Laminates DB
PTH
1D,
Deformation 2D
& Fatigue**
Materials DB
‡ AP210 DIS WD1.7
© 1993-2001 GTRC
* = Item not yet available in toolkit (all others have working examples)
** = Item available via U-Engineer.com
Engineering Information Systems Lab  eislab.gatech.edu
55
R
STEP AP210 Models
Requirements Models
• Design
• Constraints
• Interface
• Allocation
Functional Models
•
•
•
•
•
Functional Unit
Interface Declaration
Network Listing
Simulation Models
Signals
Component / Part Models
•
•
•
•
•
•
Analysis Support
Package
Material Product
Properties
“White Box”/ “Black Box”
Pin Mapping
Assembly Models
Interconnect Models
• User View
• Design View
• Component Placement
• Material product
• Complex Assemblies with
Multiple Interconnect
GD & T Model
• Datum Reference Frame
• Tolerances
•
•
•
•
•
Configuration Mgmt
Identification
Authority
Effectivity
Control
Net Change
•
•
•
•
•
User View
Design View
Bare Board Design
Layout templates
Layers
planar
non-planar
conductive
non-conductive
ProAM Technical Team
Missile supply chain SME
• PWB design & fabrication expertise
• Tool usage & feedback
Circuit Express
Missile system end-users
• Supply chain context
• Technical oversight
AMCOM
S3
Missile supply chain SME
• PWB fabrication expertise
• Tool usage & feedback
© 1993-2001 GTRC
Georgia
Tech
Atlanta
ECRC
Electronic commerce resource center
• Mgt., ESB, computing support
Engineering Information Systems Lab  eislab.gatech.edu
Research & development lab
• Program management
• Technical concepts
• Tool implementation
57
(TIGER
extensions)
Iterative Design & Analysis
PWB Stackup Design & Warpage Analysis
PWB Stackup Design Tool
1D Thermal Bending Model
Quick Formula-based Check

Layup
Re-design
b 
b L2 T
t
w y
t / 2 w
i
i
i
i
PWB Warpage Modules
Analyzable
Product Model
Detailed FEA Check
1 Oz. Cu
3 x 1080
Tetra GF
2 Oz. Cu
1 Oz. Cu
Tetra GF
1 Oz. Cu
2 Oz. Cu
2 x 2116
3 x 1080
2D Plane Strain Model
1 Oz. Cu
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
58
PWB Warpage Modules
a.k.a. CBAMs: COB-based analysis templates
ABB
deformation model
APM
Thermal
Bending Beam
pwa
associated_pwb
total diagonal
al1
total thickness
al2
coefficient of thermal bending
associated condition
al3
temperature
al4
al5
wrapage mos model
Margin
of Safety
actual
MS

 b L2 T
t
b
t
SMM

T
reference temperature
allowable
L
PWB Thermal Bending Model
(1D formula-based CBAM)
APM
warpage
pwa
associated_pwb
T
Treference
ABB
al6
layup
APM
deformation model
Parameterized
FEA Model
TOTAL
total_thickness
nominal_thickness
layers[0]
layers[1]
prepregs[0]
nominal_thickness
layers[2]
top_copper_layer
nominal_thickness
related_core
nominal_thickness
primary_structure_material linear_elastic_model
CU1T
PREPREGT
CU2T
E
EXCU
cte
PWB Plane Strain Model
(2D FEA-based CBAM)
ALPXCU
layers[3]
prepregs[0]
UX
POLYT
nominal_thickness
UY
SX
TETRA1T
primary_structure_material linear_elastic_model E
EXEPGL
cte
ALPXEGL
condition
reference temperature
TO
ux mos model
temperature
DELTAT
Margin of Safety
(> case)
allowable
actual
MS
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
59
Example SME Usage

Original design:
–
–
–
–

Six layer board
Unsymmetrical layup
Severe warpage
Analysis predicted
thermal distortion
Alternate design:
– Modeled construction
variables
– Analysis predicted
improved distortion

© 1993-2001 GTRC
New capability aided
design improvement
Engineering Information Systems Lab  eislab.gatech.edu
60
U-Engineer.com
Self-Serve Engineering Service Bureau
Analysis Documentation
Ready-to-Use Analysis Modules
Lower cost, better quality, fewer delays in supply chain
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
61
Phase 1 Accomplishments




Conceptual architecture and roadmaps
Repository/PDM methodology in Metaphase
PWB stackup design tool extensions
Next-generation XaiTools PWA-B
– Web-based mockup illustrating target extended capabilities


AP210/STEP-based tool methodology
Analysis module methodology & general-purpose
tools
– XaiTools FrameWork v0.5
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
62
Stackup Detailed Design: Build-Up Type
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
63
Stackup Design: Updated Requirements Status
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
64
An Introduction to X-Analysis Integration (XAI)
Short Course Outline
Part 1: Constrained Objects (COBs) Primer
– Nomenclature
Part 2: Multi-Representation Architecture (MRA) Primer
– Analysis Integration Challenges
– Overview of COB-based XAI
Part 3: Example Applications
» Airframe Structural Analysis (Boeing)
» Circuit Board Thermomechanical Analysis
(DoD, JPL/NASA)
» Chip Package Thermal Analysis (Shinko)
– Summary
Part 4: Advanced Topics & Current Research
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
65
Chip Package Products
Shinko
Quad Flat Packs (QFPs)
Plastic Ball Grid Array (PBGA) Packages
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
66
Flexible High Diversity Design-Analysis Integration
Electronic Packaging Examples: Chip Packages/Mounting
Shinko Electric Project: Phase 1 (completed 9/00)
Design Tools
y
L
L
Lo
F
material model
youngs modulus, E
mv6
cte, 
mv5
sr1
temperature, T
reference temperature, To
E
T  T  To
L
A
ts1
ts2
Shaft
Sleeve 2
smv1
ds1
area, A
r4
F
s
A
A
Leff
linkage
ee

s
Sleeve 1
force, F
mv4
F
E, A, 
T, e, s x
One D Linear
Elastic Model
(no shear)
ds2
T
et
s
e
mv2
elastic strain, ee
mv3
thermal strain, et
mv1
strain,e
effective length, Leff
Prelim/APM Design Tool
XaiTools ChipPackage
start, x1
condition
end, x2
r1
cross section:
effective ring
r2
L  material
L  Lo
reaction
L  x2  x1
allowable
al2a
L
r3 ro
outer radius,
al2b
L
shear modulus, G al3
total elongation,L
linear elastic model
allowable stress
twist mos model
Margin of Safety
(> case)
polar moment of inertia, J
e
Torsional Rod
stress,al1
s
temperature change,T
mode: shaft torsion
undeformed length, Lo
deformation model
length, L
Lo

1
2
Modular, Reusable
Template Libraries
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
Analyzable
Product Model
PWB DB
Analysis Modules (CBAMs)
of Diverse Behavior & Fidelity
Thermal
Resistance
Analysis Tools
XaiTools
General Math
ChipPackage
Mathematica
FEA
Ansys
3D
XaiTools
Materials DB*
Thermal
Stress
EBGA, PBGA, QFP
PKG

Basic
3D**
Chip
Cu
Ground
** = Demonstration module
© 1993-2001 GTRC
Basic
Documentation
Automation
Engineering Information Systems Lab  eislab.gatech.edu
Authoring
MS Excel
67
Traditional VTMB FEA Model Creation
Manually Intensive: 6-12 hours
FEA Model Planning Sketches - EBGA 600 Chip Package
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
VTMB = variable topology multi-body
68
APM Design Tool
Preliminary Design of Packages - PBGA Screens
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
APM =
analyzable
product model
69
Example Chip Package Idealizations (PBGA)
Idealization for solder-joint/thermal ball
[ Outer Balls ]
Average Thermal Conductivity
Vertical Direction
v: v = Vff+(1-Vf )m [W/mK]
Horizontal Direction h: 1/h = Vf/f+(1-Vf )/m [W/mK]
y2 y1
Where:
f: thermal conductivity of solder ball [W/mK]
m: thermal conductivity of air [W/mK]
Vf: volume ratio of solder ball
x1
Idealization for thermal via
% Ball Area = (Pi * (ball diameter / 2)^ 2) / (x2 * y2 - x1 * y1 )
x2
[ Inner Balls (Thermal Balls) ]
r : a radius of ball
l : a side length of square
x : number of balls
y : number of squares
r
+
l
xp r
Thermal Conductivity
2
(Ball value in all directions)
y

l
r
r
=
5 - 10 Balls
Equation for Total
Sectional Via Area
R r

S  pR 2  pr 2  n
l
-
S : total section area of vias
R : outer 
r : inner 
n : number of via
Via + Air
=
Air
Via
Courtesy of Shinko - see [Koo, 2000]
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
70
COB-based Analysis Template
Typical Input Objects for EBGA Thermal Resistance Module
COB =
constrained
object
Customized
Analysis Module Tool
with idealized
package cross-section
Generic COB Browser
with design and analysis objects
(attributes and relations)
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
71
COB-based Analysis Template
Typical Highly Automated Results
Analysis Module Tool
COB =
constrained
object
Auto-Created
FEA Inputs
(for Mesh Model)
FEA
Temperature
Distribution
Thermal Resistance
vs.
Air Flow Velocity
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
72
VTMB = variable topology multi-body technique [Koo, 2000]
Pilot & Initial Production Usage Results
Product Model-Driven Analysis


Reduced FEA modeling time > 10:1 (days/hours  minutes)
References
[1] Shinko 5/00 (in Koo, 2000)
Reduced simulation cycle > 75%
[2] Shinko evaluation 10/12/00
Analysis Model Creation Activity
With Traditional
Practice
With VTMB
Methodology*
Example
Create initial FEA model (QFP cases)
8-12 hours
10-20 minutes
QFP208PIN
Create initial FEA model (EBGA cases)
6-8 hours
10-20 minutes
EBGA352PIN
Create initial FEA model (PBGA cases)
8-10 hours
10-20 minutes
PBGA256PIN
Create variant - small topology change
0.3-6 hours
(10-20 minutes) - Moderate dimension change
(e.g., EBGA 600 heat sink size variations)
Create variant - moderate topology change
(6-8 hours)-
(10-20 minutes) - Add more features
(e.g., increase number of EBGA steps)
Create variant - large topology change


(6-8 hours)+
(10-20 minutes)or N/A
Add new types of features
(e.g., add steps to EBGA outer edges)
Enables greater analysis intensity  Better designs
Leverages XAI / CAD-CAE interoperability techniques
– Objects, Internet/web
services,
ubiquitization
methodology, …
Engineering
Information Systems
Lab  eislab.gatech.edu
© 1993-2001 GTRC
73
Cost of Associativity Gaps
Detailed Design Model
Analysis Model
(with Idealized Features)
No explicit
fine-grained
CAD-CAE
associativity
Categories of Gap Costs

Associativity time & labor
– Manual maintenance
– Little re-use
– Lost knowledge



idealizations
– Few iterations/part
– Limited part coverage
K3  f (r1,b, h)
fse 
P
2pr0te
fbe 
C1
P
2
hte
Channel Fitting Analysis
Inconsistencies
Limited analysis usage

“Wrong” values
– Too conservative:
Extra costs, inefficiencies
– Too loose:
Re-work, failures, law suits
O10,000  parts  O 10 
analyses
variables
 O 10 
 O 1,000,000 gaps
part
analysis
$
O1,000,000 gaps  O10 
 $O10,000,000 
gap
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
74
Summary


Provides methodology for bridging associativity gap
Multi-representation architecture (MRA)
& constrained objects (COBs):
– Address fundamental issues
» Explicit CAD-CAE associativity:
multi-fidelity, multi-directional, fine-grained
– Enable analysis template methodology  Flexibility & broad application

Increase quality, reduce costs, decrease time (ex. 75%):
» Capture engineering knowledge in a reusable form
» Reduce information inconsistencies
» Increase analysis intensity & effectiveness
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
75
Towards Greater CAD-CAE Interoperability
Target Analogy with Electronics Systems


Today:
Next Steps:
- Monolithic software applications; Few interchangeable “parts”
- Identify other formal patterns and use cases
(natural subsystems / levels of “packaging”)
- Define standard architectures and interfaces among subsystems
Interconnect
Middleware
Generic Geometric Modeling Tools,
Math Tools, FEA Tools,
Requirements
& Function Tools, …
Printed
Circuit Assemblies
Assembly
Product-Specific
Simulation-Based
Design
Tools
Product
Enclosure
Die
APMs
CBAMs Part
Packaged
Extended
MRA
Printed Circuit
ABBs
Package
Substrate
Die
SMMs
Externally
Linkages to Other
Visible
Connectors
Life Cycle
Models
Adapted from Rockwell Collins Inc.
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
76
Summary of Tools and Services
offered via Georgia Tech Research Corp.
http://eislab.gatech.edu/

XaiTools FrameWork
™
– General-purpose analysis integration toolkit

Product-Specific Toolkits
– XaiTools PWA-B™
– XaiTools ChipPackage™

™
U-Engineer.com
– Internet-based engineering service bureau (ESB)
– Self-serve automated analysis modules  Full-serve consulting

Research, Development, and Consulting
–
–
–
–
Analysis integration & optimization
– Short courses
Product-specific analysis module catalogs
Internet/Intranet-based ESB development
Knowledge-based engineering & information technology
» PDM, STEP, GenCAM, XML, UML, Java, CORBA, Internet, …
– CAD/CAE/CAM, parametric FEA, thermal & mechanical analysis
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
77
For Further Information ...

EIS Lab web site: http://eislab.gatech.edu/
– Publications, project overviews, tools, etc.
– See: X-Analysis Integration (XAI) Central
http://eislab.gatech.edu/research/XAI_Central.doc

XaiTools home page: http://eislab.gatech.edu/tools/XaiTools/

Pilot commercial ESB: http://www.u-engineer.com/
– Internet-based self-serve analysis
– Analysis module catalog for electronic packaging
– Highly automated front-ends to general FEA & math tools
™
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
78