Transcript MSP
National Science Foundation Math and Science Partnership Optimism and Opportunities Math and Science Partnership: A Research and Development Effort James Hamos Division of Undergraduate Education Directorate for Education and Human Resources National Science Foundation Math and Science Partnership Today’s Conversation A Quick Glance at the NSF-MSP Portfolio What are we learning? Funding Opportunities Persisting Challenges National Science Foundation Math and Science Partnership Disclaimer The instructional practices and assessments discussed or shown in these presentations are not intended as an endorsement by the U.S. Department of Education. National Science Foundation Math and Science Partnership Persisting Challenges? Jot down three challenges you see that persist in this important work of improving STEM education through partnership between Post-secondary education and K-12 education National Science Foundation Math and Science Partnership NSF’s Math and Science Partnership A research & development effort at NSF for building capacity and integrating the work of higher education with that of K-12 to strengthen and reform mathematics and science education Launched in FY 2002 as a result of legislative interest and was also a key facet of the NCLB vision for K-12 education Strongly reauthorized as part of the America COMPETES Act of 2007 and provided with additional appropriation in the American Recovery and Reinvestment Act of 2009 and the FY 2009 federal budget National Science Foundation Math and Science Partnership Through the Math and Science Partnership program, NSF awards competitive, merit-based grants to teams composed of institutions of higher education, local K12 school systems and supporting partners. At their core, Partnerships contain at least one institution of higher education and one K-12 school system. National Science Foundation Math and Science Partnership What distinguishes NSF’s MSP Program? Substantial intellectual engagement of mathematicians, scientists and engineers from higher education in improving K-12 student outcomes in mathematics and the sciences Depth and quality of creative, strategic actions that extend beyond commonplace approaches National Science Foundation Math and Science Partnership What distinguishes NSF’s MSP Program? Breadth and depth of Partnerships – Partnerships between organizations, rather than among individuals only Organizational/institutional change driven by Partnerships Degree to which MSP work is integrated with evidence; degree to which the work of the Partnerships is itself the work of scholars who seek evidence for what they do National Science Foundation Math and Science Partnership 145 Funded MSP Projects 12 Comprehensive Partnerships (FY 2002, FY 2003) 36 Targeted Partnerships (FY 2002, FY 2003, FY 2004, FY 2008) 23 Institute Partnerships (Prototype Award in FY 2003, FY 2004, FY 2006, FY 2008, FY 2009) 19 MSP-Start Partnerships (FY 2008, FY2009) 6 Phase II Partnerships (FY 2008, FY 2009) 49 RETA projects (Design Awards in FY 2002, FY 2003, FY 2004, FY 2006, FY 2008, FY 2009) National Science Foundation Math and Science Partnership Math and Science Partnership (MSP) Program National Distribution of Partnership Activity National Science Foundation Math and Science Partnership Scope of Partnership Projects Over 900 K-12 school districts ~5 million students ~147,000 teachers of K-12 math and science Over 200 institutions of higher education Over 2600 faculty, administrators, graduate and undergraduate students National Science Foundation Math and Science Partnership Key Features Partnership-driven, with significant engagement of faculty in mathematics, the sciences, and engineering Teacher quality, quantity, and diversity Challenging courses and curricula Evidence-based design and outcomes Institutional change and sustainability National Science Foundation Math and Science Partnership Impacts on Students Overall increase in math proficiency in MSP schools from the first year 200304 (672 schools in the sample) to the 2006-07 (1666 schools in sample) at all levels (analysis years to date; future reports will document later trends) Sustained (1st year to end year) increase in math proficiency is statistically significant at all three levels National Science Foundation Math and Science Partnership Impacts on Students Increased proficiency of students across the MSP portfolio on state mathematics assessments National Science Foundation Math and Science Partnership Impacts continued… Schools that focused specifically with math interventions had a particularly powerful and sustained impact on student achievement in math as compared to schools in other projects that did not have this focus Similar trends in improved student achievement in science also were found, particularly in schools that focused on science interventions National Science Foundation Math and Science Partnership Impacts continued… A closing of the achievement gaps in MSP schools between both African American and Hispanic students and white student in elementary school math, middle school science and high school science between African American and white students in elementary school science between Hispanic and with students in high school mathematics National Science Foundation Math and Science Partnership Examining Student Achievement Year-by-Year Trend Analysis Matched comparisons Meta-analysis pre/post assessments Closing the Achievement Gap National Science Foundation Math and Science Partnership What Are We Learning? National Science Foundation Math and Science Partnership What are we learning? A few reminders from past presentations Through new long-term and coherent courses and programs, the involvement of STEM faculty and their departments in preand in-service education enhances content knowledge of teachers STEM Professional Learning Communities are new exemplars in professional development MSP projects are making new contributions to the STEM education literature related to teacher content knowledge and teacher leadership—Knowledge Management and Dissemination—www.mspkmd.net Research methods in ethnography and social network analysis help document change in institutions and partnerships New centers and institutes devoted to K-16 math and science education facilitate interactions between higher education and K-12, offer professional development for STEM faculty, and advance the scholarship of teaching and learning National Science Foundation Math and Science Partnership What are we learning? A few reminders from past presentations Post-secondary STEM faculty, often with aid of teachers-inresidence on college campuses, are broadening their discussions of teaching and learning and supporting new efforts in teacher preparation Revised tenure & promotion policies recognize faculty for scholarly contribution to the advancement of math and science education STEM faculty engagement with K-12 is resulting in: Increased sophistication in pedagogy and praxis of STEM faculty An awareness of the importance of the STEM faculty role in pre-service preparation, including encouraging strong STEM students to consider teaching as an appropriate career path A paradigm shift of Respect—Professionalism—Mutual Benefit Teachers learn from STEM faculty STEM faculty learn from teachers There are no quick fixes—the substantive improvement of K-12 STEM education requires long-term attention from people who are committed to long-term solutions National Science Foundation Math and Science Partnership New National Impact Report National Science Foundation Math and Science Partnership What are we learning? Learning progressions provide a new way to build conceptual knowledge in the science curriculum The partnership project entitled Culturally relevant ecology, learning progressions and environmental literacy is driven by an environmental science literacy framework around learning progressions within core science and mathematics concepts. The project engages the research and education prowess within four research sites of the NSF-funded Long Term Ecological Research (LTER) Network with 22 K-12 schools/districts, with direct impacts on over 250 science and mathematics teachers and 70,000 students of highly diverse backgrounds. The learning progressions are organized around three key science strands (carbon, water, and biodiversity) and a mathematical strand (quantitative reasoning and the mathematics of modeling); all of these are further connected by the theme of education for citizenship. National Science Foundation Math and Science Partnership What are we learning? Multiple strategies enhance opportunities for students to be prepared for, have access to, and be encouraged to participate and succeed in challenging mathematics and/or science courses In collaboration with the College Board and Harvard Medical School, the Boston Science Partnership core higher education partners – the University of Massachusetts–Boston and Northeastern University – have provided workshops and institutes for teachers, university-based laboratory programs for students and teachers, summer “bridge” programs for entering AP students, classroom volunteer support and a full-length practice exam for students. To help lead some of these activities, the BSP recruited experienced AP teachers with the long-term goal of developing them into endorsed College Board consultants. National Science Foundation Math and Science Partnership Boston Science Partnership The Boston Science Partnership provides intensive, year-round support to Advanced Placement (AP) science classrooms throughout the Boston Public Schools to support the district’s growth of student enrollment in AP science programs. Between 2000 and 2009, the number of Boston Public Schools students taking AP science exams has dramatically increased from 183 to 781. National Science Foundation Math and Science Partnership What are we learning? Peer-enhanced classrooms enable teachers to use “assistants” in their classes and student achievement improves as schools restructure Based on early successes in an intensive summer school setting, the MSPinNYC, involving the City University of New York (CUNY) in partnership with the NYC Department of Education, developed a model to change classroom instruction during the academic year called the Peer Enhanced Restructured Classroom (PERC). This model uses students who have previously passed the course as peer teachers. The teacher actually does little direct teaching to the class. Rather, the teacher learns to work through the student peer teachers, effectively teaching through the peers. Activities designed by the teacher are used by the peer teachers to engage and support learning in the classroom. The role of the teacher changes from one primarily defined by supporting learning through direct interaction with students to that of being an effective manager. National Science Foundation Math and Science Partnership MSPinNYC Passing Rates of Students Sitting for the New York State-Mandated Regents Exam in Integrated Algebra or Living Environments Pre-Pilot Spring 2008 • Large school • 3 teachers; 2 IA, 2 LE • N IA = 80; NLE = 30 Pilot: Academic Year 2008-2009 • Four schools, 2 large, 2 small • 11 teachers; 7 math, 4 science • N IA = 383; NLE = 201 Field Trial PERC Summer School 2009 • 2 Sites: Hunter College, New World High School • 3 IA classes; 3 LE classes • N IA = 65; NLE = 44 In the 2008-2009 Academic year, the MSPinNYC ran a pilot field trial that involved four high schools, eleven teachers, and nearly 600 students in NYC. In control type "A", students are randomly placed into the experimental versus control class, but the two classes are taught by different teachers. In control type "B", the control classes are taught by the same teacher in a traditional classroom. Lastly, in control type "C" the student population is not the same in the control and experimental classes. National Science Foundation Math and Science Partnership What are we learning? K-12 Engineering Education is ready for prime time The University of Texas at Austin's Cockrell School of Engineering is partnering with the successful UTeach Natural Sciences program and the Austin Independent School District to develop and deliver UTeachEngineering, an innovative, design- and challenge-based curriculum for preparing secondary teachers of engineering. To meet the growing need for engineering teachers in Texas, and to serve as a model in engineering education across the nation, UTeachEngineering has the following four professional development pathways to teacher preparedness, two for in-service teachers and two for preservice teachers: 1. UTeach Master of Arts in Science and Engineering Education (MASEE); 2. Engineering Summer Institutes for Teachers (ESIT); 3. Engineering Certification Track for Physics Majors; and 4. Teacher Preparation Track for Engineering Majors. National Science Foundation Math and Science Partnership What are we learning? New tools and instruments, with documented reliability & validity, help professional developers accurately assess the content that teachers need to know for the teaching of math and science The Misconception Oriented Standards-based Assessment Resource for Teachers in Life Science (MOSART-LS) project develops rigorous Distractor Driven Multiple Choice assessment tools that aid in generating evidence-based measures of professional development’s impact on K-8 teachers' life science subject-matter knowledge and relevant pedagogical content knowledge. This work utilizes peer-reviewed research studies of student conceptions in order to generate specialized assessments. These assessments measure the degree to which teachers hold the accepted scientific view represented by each of the 31 K-8 Content Standards in life science. The project is developing 250 valid new items and gathering data from a nationally representative sample of 8000 students and their teachers. National Science Foundation Math and Science Partnership What are we learning? Cyber-enabled tools promote professional learning communities, and enhance teaching and learning The Institute for Chemistry Literacy through Computational Science (ICLCS) is preparing rural Illinois chemistry teachers for the 21st Century through content, computational tools, and teaching methodology by building a virtual professional learning community among researchers, faculty and students. ICLCS Fellows enroll in a three-credit hour graduate-level chemistry course during the academic year delivered through Moodle, an open source course development tool that supports the virtual learning community. Fellows post reflections on their teaching, share materials, interact with faculty mentors, and attend online presentations to enhance their chemistry content knowledge. Exercises are designed to foster expertise in software use through building molecules, performing geometry optimizations, measuring bond distances and angles, determining energies, and viewing surfaces. National Science Foundation Math and Science Partnership Funding Opportunities National Science Foundation Math and Science Partnership FY 2010 MSP Solicitation NSF 10-XXX In this solicitation, NSF will likely support six types of awards: Partnerships Targeted Institute MSP-Start Phase II Research, Evaluation and Technical Assistance (RETA) Innovation through Institutional Integration (I3) National Science Foundation Math and Science Partnership Innovative partnerships to improve K-12 student achievement in math and science Targeted — focus on studying and solving teaching and learning issues within a specific grade range or at a critical juncture in education, and/or within a specific disciplinary focus in math or the sciences Institute — focus on meeting national needs for teacher leaders/master teachers who have deep disciplinary content knowledge and are prepared to become intellectual leaders in math and science in their schools and districts MSP-Start — for those new to the MSP program, to support the necessary data analysis, project design, evaluation and team building activities needed to develop a full MSP Targeted or Institute Partnership National Science Foundation Math and Science Partnership FY 2010 MSP Solicitation continued… Phase II — for prior NSF MSP awardees, focus on specific innovative areas of their work that, if supported through additional research, will advance knowledge and understanding in specific area(s) Research, Evaluation and Technical Assistance (RETA) — projects that develop tools to assess the partnerships’ progress, build evaluation capacity and conduct focused research. (Not partnerships) National Science Foundation Math and Science Partnership What Makes a Proposal Competitive? Original ideas that go beyond the commonplace… innovation Succinct, focused project plan Rationale and evidence of potential effectiveness Sufficient detail provided Realistic amount of work Strength of the Partnership team Potential contribution to knowledge Strong evaluation plan National Science Foundation Math and Science Partnership Innovation through Institutional Integration (I3) I3 challenges institutions to think strategically about the creative integration of NSF-funded awards, with particular emphasis on awards managed through programs in the Directorate for Education and Human Resources (EHR), but not limited to those awards In FY 2010, proposals are solicited in multiple EHR programs that advance I3 goals: CREST, GSE, HBCU-UP, ITEST, LSAMP, MSP, Noyce, RDE, and TCUP All I3 proposals are reviewed in competition with one another An institution may submit only one I3 proposal in only one program; Provost is PI; Does not affect submission to other programs April 7, 2010 due date for submission National Science Foundation Math and Science Partnership National Science Foundation Math and Science Partnership Robert Noyce Teacher Scholarship Program Initiated by Act of Congress in 2002 Reauthorized in 2007 (America COMPETES Act) To encourage talented mathematics, science, and engineering undergraduates to pursue teaching careers To encourage STEM professionals to become teachers To prepare Master Teachers National Science Foundation Math and Science Partnership Noyce Scholarship Program FY 2010 Solicitation (NSF 10-514) Robert Noyce Teacher Scholarship Track Scholarships (at least $10,000 per year) for undergraduate STEM majors preparing to become K-12 Teachers Summer internships for freshmen and sophomores Stipends (at least $10,000 for 1 year) for STEM professionals seeking to become K-12 teachers Recipients commit to teaching in a high need school district for 2 years for each year of scholarship/stipend support NSF Teaching Fellowships & Master Teaching Fellowships (TF/MTF) Track Fellowships for STEM professionals receiving teacher certification through a master’s degree program Fellowships for science and math teachers preparing to become Master Teachers National Science Foundation Math and Science Partnership Noyce Scholarship Program NSF 10-514 Important Dates Letters of Intent (optional): February 9, 2010 Full Proposal Deadline: March 10, 2010 Questions: [email protected] National Science Foundation Math and Science Partnership Other Opportunities for Funding Advanced Technological Education (ATE) Focuses on the education of technicians for the high-technology fields that drive our nation's economy in part through programs that are designed to improve existing as well as prospective K-12 teachers' technological understanding; to provide them with experiences to use in engaging students in real world technological problems; and to strengthen their preparation in science and mathematics overall Course, Curriculum and Laboratory Improvement (CCLI) Supports efforts to create, adapt, and disseminate new learning materials and teaching strategies, develop faculty expertise, implement educational innovations, assess learning and evaluate innovations, and conduct research on STEM teaching and learning National Science Foundation Math and Science Partnership Other Opportunities for Funding NSF Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) Makes grants to institutions of higher education to support scholarships for academically talented, financially needy students, enabling them to enter the workforce following completion of an associate, baccalaureate, or graduate level degree in science and engineering disciplines. National Science Foundation Math and Science Partnership Tools and Instruments? A few reminders from past presentations Evidence: An Essential Tool – Planning for and Gathering Evidence Using the Design-Implementation-Outcomes (DIO) Cycle of Evidence Learning Mathematics for Teaching / Mathematical Knowledge for Teaching; web-based Teacher Knowledge Assessment system (Harvard U., PI Heather Hill; U. of Michigan, PI Geoffrey Phelps) Assessing Teacher Learning About Science Teaching (ATLAST); (Horizon Research, Inc., PI Sean Smith) Misconception Oriented Standards-based Assessment Resource for Teachers (MOSART); physical, earth, and life sciences; (Harvard U., PI Philip Sadler) MSPnet.org Toolbox (TERC, PI Joni Falk) Online Evaluation Resource Library (oerl.sri.com, SRI.com) Surveys of Enacted Curriculum (Wisconsin Center for Educational Research and CCSSO) Distributed Leadership for Middle School Math Education (Northwestern U., PI Jim Spillane) Thinking About Mathematics Instruction (EDC, PI Barbara Scott Nelson) National Science Foundation Math and Science Partnership Back to those Persisting Challenges? Capturing the Challenges and continuing the conversation into the breakout session…… Which will be MUCH MORE INTERACTIVE! National Science Foundation Math and Science Partnership Website for MSP at NSF http://www.nsf.gov Click on Program Area – Education Click on Division of Undergraduate Education (DUE) Click on Math and Science Partnership Program Website for MSPnet http://mspnet.org National Science Foundation Math and Science Partnership Mathematics and Science Partnership (MSP) Programs U.S. Department of Education San Diego Regional Meeting February 2010